Error Analysis of Projection Methods for Non inf-sup Stable Mixed Finite Elements: The Navier-Stokes Equations

被引:6
|
作者
de Frutos, Javier [1 ]
Garcia-Archilla, Bosco [2 ]
Novo, Julia [3 ]
机构
[1] Univ Valladolid, Inst Invest Matemat IMUVA, Valladolid, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
关键词
Projection methods; Non inf-sup stable elements; Navier-Stokes equations; PSPG stabilization; APPROXIMATION; CONVERGENCE; STABILITY;
D O I
10.1007/s10915-017-0446-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain error bounds for a modified Chorin-Teman (Euler non-incremental) method for non inf-sup stable mixed finite elements applied to the evolutionary Navier-Stokes equations. The analysis of the classical Euler non-incremental method is obtained as a particular case. We prove that the modified Euler non-incremental scheme has an inherent stabilization that allows the use of non inf-sup stable mixed finite elements without any kind of extra added stabilization. We show that it is also true in the case of the classical Chorin-Temam method. The relation of the methods with the so called pressure stabilized Petrov Galerkin method is established. We do not assume non-local compatibility conditions for the solution.
引用
收藏
页码:426 / 455
页数:30
相关论文
共 50 条
  • [31] Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations
    Chen, Gang
    Feng, Min-fu
    He, Yin-nian
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (08) : 953 - 970
  • [32] Finite element methods for the Navier-Stokes equations by H(div) elements
    Wang, Junping
    Wang, Xiaoshen
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 410 - 436
  • [33] FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div)ELEMENTS
    Junping Wang Division of Mathematical Sciences
    Journal of Computational Mathematics, 2008, 26 (03) : 410 - 436
  • [34] Stabilized mixed finite element methods for the Navier-Stokes equations with damping
    Li, Zhenzhen
    Shi, Dongyang
    Li, Minghao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 605 - 619
  • [35] DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS
    Howell, Jason S.
    Walkington, Noel J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03): : 789 - 805
  • [36] A multimesh finite element method for the Navier-Stokes equations based on projection methods
    Dokken, Jrgen S.
    Johansson, August
    Massing, Andre
    Funke, Simon W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [37] AN A POSTERIORI ERROR ESTIMATE FOR MIXED FINITE ELEMENT APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS
    Elakkad, Abdeslam
    Elkhalfi, Ahmed
    Guessous, Najib
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 529 - 550
  • [38] Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations
    Schroeder P.W.
    Lehrenfeld C.
    Linke A.
    Lube G.
    SeMA Journal, 2018, 75 (4) : 629 - 653
  • [39] Accurate projection methods for the incompressible Navier-Stokes equations
    Brown, DL
    Cortez, R
    Minion, ML
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 168 (02) : 464 - 499
  • [40] Some implementations of projection methods for Navier-Stokes equations
    Guermond, JL
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (05): : 637 - 667