This paper is concerned with the existence of homoclinic orbits for the second-order Hamiltonian system with obstacle item, ü(t) − A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\dot u
$$\end{document} (t) = ∇F(t, u), where F(t, u) is T-periodic in t with ∇F(t, u) = L(t)u + ∇R(t, u). By using a generalized linking theorem for strongly indefinite functionals, we prove the existence of homoclinic orbits for both the super-quadratic case and the asymptotically linear one.
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lv, Xiang
Lu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lu, Shiping
Yan, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Univ Helsinki, Dept Math & Stat, Rolf Nevanlinna Inst, FIN-00014 Helsinki, FinlandAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
机构:
Jishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Xie, Jingli
Luo, Zhiguo
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
Luo, Zhiguo
Chen, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Jishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R ChinaJishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China