Homoclinic orbits for the second-order Hamiltonian systems with obstacle item

被引:0
|
作者
CuiCui Yin
FuBao Zhang
机构
[1] Southeast University,Department of Mathematics
来源
Science China Mathematics | 2010年 / 53卷
关键词
Hamiltonian system; homoclinic orbits; super-quadratic; asymptotically linear; spectrum; 30P12; 32C12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the existence of homoclinic orbits for the second-order Hamiltonian system with obstacle item, ü(t) − A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \dot u $$\end{document} (t) = ∇F(t, u), where F(t, u) is T-periodic in t with ∇F(t, u) = L(t)u + ∇R(t, u). By using a generalized linking theorem for strongly indefinite functionals, we prove the existence of homoclinic orbits for both the super-quadratic case and the asymptotically linear one.
引用
收藏
页码:3005 / 3014
页数:9
相关论文
共 50 条
  • [1] Homoclinic orbits for the second-order Hamiltonian systems with obstacle item
    Yin CuiCui
    Zhang FuBao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3005 - 3014
  • [2] Homoclinic orbits for the second-order Hamiltonian systems with obstacle item
    YIN CuiCui & ZHANG FuBao Department of Mathematics
    Science China Mathematics, 2010, 53 (11) : 3005 - 3014
  • [3] Homoclinic orbits for the second-order Hamiltonian systems
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 116 - 138
  • [4] TWO HOMOCLINIC ORBITS FOR SOME SECOND-ORDER HAMILTONIAN SYSTEMS
    Cerda, Patricio
    Faria, Luiz F. O.
    Toon, Eduard
    Ubilla, Pedro
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (02) : 427 - 444
  • [5] Existence of even homoclinic orbits for second-order Hamiltonian systems
    Lv, Ying
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (07) : 2189 - 2198
  • [6] Infinitely many homoclinic orbits for the second-order Hamiltonian systems
    Zou, WM
    Li, SJ
    APPLIED MATHEMATICS LETTERS, 2003, 16 (08) : 1283 - 1287
  • [7] Existence of Homoclinic Orbits of Superquadratic Second-Order Hamiltonian Systems
    Guo, Chengjun
    O'Regan, Donal
    Wang, Chengjiang
    Agarwal, Ravi P.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 27 - 41
  • [8] Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials
    Lv, Ying
    Tang, Chun-Lei
    CHAOS SOLITONS & FRACTALS, 2013, 57 : 137 - 145
  • [9] Nontrivial homoclinic orbits for second-order singular and periodic Hamiltonian systems
    LI Chengyue
    Department of Mathematics
    Computer Center
    Science Bulletin, 1999, (02) : 123 - 129
  • [10] Homoclinic orbits for second-order discrete Hamiltonian systems with subquadratic potential
    Lin, Xiaoyan
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,