Query answering over uncertain RDF knowledge bases: explain and obviate unsuccessful query results

被引:0
|
作者
Ibrahim Dellal
Stéphane Jean
Allel Hadjali
Brice Chardin
Mickaël Baron
机构
[1] University of Poitiers,LIAS/ISAE
来源
关键词
Uncertain knowledge bases; RDF quad; SPARQL queries; Empty answers; Named graph; Reification; Quadstore;
D O I
暂无
中图分类号
学科分类号
摘要
Several large uncertain knowledge bases (KBs) are available on the Web where facts are associated with a certainty degree. When querying these uncertain KBs, users seek high-quality results, i.e., results that have a certainty degree greater than a given threshold α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. However, as they usually have only a partial knowledge of the KB contents, their queries may be failing i.e., they return no result for the desired certainty level. To prevent this frustrating situation, instead of returning an empty set of answers, our approach explains the reasons of the failure with a set of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}minimal failing subqueries (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}MFSs) and computes alternative relaxed queries, called α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}maXimal succeeding subqueries (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}XSSs), that are as close as possible to the initial failing query. Moreover, as the user may not always be able to provide an appropriate threshold α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, we propose three algorithms to compute the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}MFSs and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}XSSs for other thresholds, which also constitutes a relevant feedback for the user. Multiple experiments with the WatDiv benchmark show the relevance of our algorithms compared to a baseline method.
引用
收藏
页码:1633 / 1665
页数:32
相关论文
共 50 条
  • [21] An Evolutionary Perspective on Approximate RDF Query Answering
    Gueret, Christophe
    Oren, Eyal
    Schlobach, Stefan
    Schut, Martijn
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2008, 2008, 5291 : 215 - 228
  • [22] Instance-based query answering with semantic knowledge bases
    Fanizzi, Nicola
    d'Amato, Claudia
    Esposito, Floriana
    AI(ASTERISK)IA 2007: ARTIFICIAL INTELLIGENCE AND HUMAN-ORIENTED COMPUTING, 2007, 4733 : 254 - 265
  • [23] Query Answering over Fact Bases in Fuzzy Propositional Logic
    Plesniewicz, Gerald S.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1252 - 1255
  • [24] An RDF/OWL Knowledge Base for Query Answering and Decision Support in Clinical Pharmacogenetics
    Samwald, Matthias
    Freimuth, Robert
    Luciano, Joanne S.
    Lin, Simon
    Powers, Robert L.
    Marshall, M. Scott
    Adlassnig, Klaus-Peter
    Dumontier, Michel
    Boyce, Richard D.
    MEDINFO 2013: PROCEEDINGS OF THE 14TH WORLD CONGRESS ON MEDICAL AND HEALTH INFORMATICS, PTS 1 AND 2, 2013, 192 : 539 - 542
  • [25] Distributed RDF Query Answering with Dynamic Data Exchange
    Potter, Anthony
    Motik, Boris
    Nenov, Yavor
    Horrocks, Ian
    SEMANTIC WEB - ISWC 2016, PT I, 2016, 9981 : 480 - 497
  • [26] Anytime Query Answering in RDF through Evolutionary Algorithms
    Oren, Eyal
    Gueret, Christophe
    Schlobach, Stefan
    SEMANTIC WEB - ISWC 2008, 2008, 5318 : 98 - 113
  • [27] Formal Query Building with Query Structure Prediction for Complex Question Answering over Knowledge Base
    Chen, Yongrui
    Li, Huiying
    Hua, Yuncheng
    Qi, Guilin
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3751 - 3758
  • [28] Question Answering over Knowledge Graphs with Query Path Generation
    Yang, Linqing
    Guo, Kecen
    Liu, Bo
    Gong, Jiazheng
    Zhang, Zhujian
    Zhao, Peiyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 146 - 158
  • [29] Complex Query Augmentation for Question Answering over Knowledge Graphs
    Abdelkawi, Abdelrahman
    Zafar, Hamid
    Maleshkova, Maria
    Lehmann, Jens
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2019 CONFERENCES, 2019, 11877 : 571 - 587
  • [30] Temporalizing rewritable query languages over knowledge bases
    Borgwardt, Stefan
    Lippmann, Marcel
    Thost, Veronika
    JOURNAL OF WEB SEMANTICS, 2015, 33 : 50 - 70