Query answering over uncertain RDF knowledge bases: explain and obviate unsuccessful query results

被引:0
|
作者
Ibrahim Dellal
Stéphane Jean
Allel Hadjali
Brice Chardin
Mickaël Baron
机构
[1] University of Poitiers,LIAS/ISAE
来源
关键词
Uncertain knowledge bases; RDF quad; SPARQL queries; Empty answers; Named graph; Reification; Quadstore;
D O I
暂无
中图分类号
学科分类号
摘要
Several large uncertain knowledge bases (KBs) are available on the Web where facts are associated with a certainty degree. When querying these uncertain KBs, users seek high-quality results, i.e., results that have a certainty degree greater than a given threshold α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. However, as they usually have only a partial knowledge of the KB contents, their queries may be failing i.e., they return no result for the desired certainty level. To prevent this frustrating situation, instead of returning an empty set of answers, our approach explains the reasons of the failure with a set of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}minimal failing subqueries (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}MFSs) and computes alternative relaxed queries, called α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}maXimal succeeding subqueries (α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}XSSs), that are as close as possible to the initial failing query. Moreover, as the user may not always be able to provide an appropriate threshold α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, we propose three algorithms to compute the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}MFSs and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}XSSs for other thresholds, which also constitutes a relevant feedback for the user. Multiple experiments with the WatDiv benchmark show the relevance of our algorithms compared to a baseline method.
引用
收藏
页码:1633 / 1665
页数:32
相关论文
共 50 条
  • [1] Query answering over uncertain RDF knowledge bases: explain and obviate unsuccessful query results
    Dellal, Ibrahim
    Jean, Stephane
    Hadjali, Allel
    Chardin, Brice
    Baron, Mickael
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (03) : 1633 - 1665
  • [2] Query answering in rough knowledge bases
    Vitória, A
    Damásio, CV
    Maluszyniski, J
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 197 - 204
  • [3] Query answering over inconsistent knowledge bases: A probabilistic approach
    Calautti, Marco
    Greco, Sergio
    Molinaro, Cristian
    Trubitsyna, Irina
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 935 : 144 - 173
  • [4] Deep Query Ranking for Question Answering over Knowledge Bases
    Zafar, Hamid
    Napolitano, Giulio
    Lehmann, Jens
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 635 - 638
  • [5] Formal Query Generation for Question Answering over Knowledge Bases
    Zafar, Hamid
    Napolitano, Giulio
    Lehmann, Jens
    [J]. SEMANTIC WEB (ESWC 2018), 2018, 10843 : 714 - 728
  • [6] A scalable and extensible framework for query answering over RDF
    De Virgilio, Roberto
    Del Nostro, Pierluigi
    Gianforme, Giorgio
    Paolozzi, Stefano
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2011, 14 (5-6): : 599 - 622
  • [7] Cooperative query answering for RDF
    Tanasescu, A
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 535 - 543
  • [8] A scalable and extensible framework for query answering over RDF
    Roberto De Virgilio
    Pierluigi Del Nostro
    Giorgio Gianforme
    Stefano Paolozzi
    [J]. World Wide Web, 2011, 14 : 599 - 622
  • [9] Optimal Query Answering in Fuzzy Knowledge Bases
    Plesniewicz, Gerald
    Tarasov, Valery
    [J]. 2009 FIFTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTIONS IN SYSTEM ANALYSIS, DECISION AND CONTROL, 2010, : 59 - +
  • [10] Query-answering CG knowledge bases
    Leclere, Michel
    Moreau, Nicolas
    [J]. CONCEPTUAL STRUCTURES: KNOWLEDGE VISUALIZATION AND REASONING, 2008, 5113 : 147 - 160