Field of View Normalization in Multi-Site Brain MRI

被引:0
|
作者
Yangming Ou
Lilla Zöllei
Xiao Da
Kallirroi Retzepi
Shawn N. Murphy
Elizabeth R. Gerstner
Bruce R. Rosen
P. Ellen Grant
Jayashree Kalpathy-Cramer
Randy L. Gollub
机构
[1] Harvard Medical School,Department of Pediatrics and Radiology, Boston Children’s Hospital
[2] Harvard Medical School,Department of Radiology, Massachusetts General Hospital
[3] Harvard Medical School,Department of Psychiatry, Massachusetts General Hospital
[4] Harvard Medical School,Functional Neuroimaging Laboratory, Brigham and Women’s Hospital
[5] Research Computing,Neuro
[6] Partners Healthcare,Oncology, Massachusetts General Hospital
[7] Harvard Medical School,undefined
来源
Neuroinformatics | 2018年 / 16卷
关键词
Multi-site MRI; Normalization; Standardization; Field of view;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-site brain MRI analysis is needed in big data neuroimaging studies, but challenging. The challenges lie in almost every analysis step including skull stripping. The diversities in multi-site brain MR images make it difficult to tune parameters specific to subjects or imaging protocols. Alternatively, using constant parameter settings often leads to inaccurate, inconsistent and even failed skull stripping results. One reason is that images scanned at different sites, under different scanners or protocols, and/or by different technicians often have very different fields of view (FOVs). Normalizing FOV is currently done manually or using ad hoc pre-processing steps, which do not always generalize well to multi-site diverse images. In this paper, we show that (a) a generic FOV normalization approach is possible in multi-site diverse images; we show experiments on images acquired from Philips, GE, Siemens scanners, from 1.0T, 1.5T, 3.0T field of strengths, and from subjects 0–90 years of ages; and (b) generic FOV normalization improves skull stripping accuracy and consistency for multiple skull stripping algorithms; we show this effect for 5 skull stripping algorithms including FSL’s BET, AFNI’s 3dSkullStrip, FreeSurfer’s HWA, BrainSuite’s BSE, and MASS. We have released our FOV normalization software at http://www.nitrc.org/projects/normalizefov.
引用
收藏
页码:431 / 444
页数:13
相关论文
共 50 条
  • [1] Field of View Normalization in Multi-Site Brain MRI
    Ou, Yangming
    Zollei, Lilla
    Da, Xiao
    Retzepi, Kallirroi
    Murphy, Shawn N.
    Gerstner, Elizabeth R.
    Rosen, Bruce R.
    Grant, P. Ellen
    Kalpathy-Cramer, Jayashree
    Gollub, Randy L.
    [J]. NEUROINFORMATICS, 2018, 16 (3-4) : 431 - 444
  • [2] Quality Assurance in multi-site MRI trials
    Fox, Robert
    Zhou, Xiaopeng
    Sakaie, Ken
    Debbins, Josef
    Kirsch, John
    Lowe, Mark
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 40 - 41
  • [3] Comparison of Image Normalization Methods for Multi-Site Deep Learning
    Albert, Steffen
    Wichtmann, Barbara D.
    Zhao, Wenzhao
    Maurer, Angelika
    Hesser, Juergen
    Attenberger, Ulrike I.
    Schad, Lothar R.
    Zoellner, Frank G.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [4] Brain age gap as a potential biomarker for schizophrenia: A multi-site structural MRI study
    Man, Weiqi
    Ding, Hao
    Chai, Chao
    An, Xingwei
    Liu, Feng
    Qin, Wen
    Yu, Chunshui
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 4060 - 4063
  • [5] Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI
    Hansen, Colin B.
    Rogers, Baxter P.
    Schilling, Kurt G.
    Nath, Vishwesh
    Blaber, Justin A.
    Irfanoglu, Okan
    Barnett, Alan
    Pierpaoli, Carlo
    Anderson, Adam W.
    Landman, Bennett A.
    [J]. MAGNETIC RESONANCE IMAGING, 2021, 76 : 69 - 78
  • [6] Striatal abnormalities in trichotillomania: A multi-site MRI analysis
    Isobe, Masanori
    Redden, Sarah A.
    Keuthen, Nancy J.
    Stein, Dan J.
    Lochner, Christine
    Grant, Jon E.
    Chamberlain, Samuel R.
    [J]. NEUROIMAGE-CLINICAL, 2018, 17 : 893 - 898
  • [7] ADAPTATION OF A MULTI-SITE NETWORK TO A NEW CLINICAL SITE VIA BATCH-NORMALIZATION SIMILARITY
    Serlin, Shira Kasten
    Goldberger, Jacob
    Greenspan, Hayit
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [8] Multi-site harmonization of diffusion MRI data in a registration framework
    Mirzaalian, Hengameh
    Ning, Lipeng
    Savadjiev, Peter
    Pasternak, Ofer
    Bouix, Sylvain
    Michailovich, Oleg
    Karmacharya, Sarina
    Grant, Gerald
    Marx, Christine E.
    Morey, Rajendra A.
    Flashman, Laura A.
    George, Mark S.
    McAllister, Thomas W.
    Andaluz, Norberto
    Shutter, Lori
    Coimbra, Raul
    Zafonte, Ross D.
    Coleman, Mike J.
    Kubicki, Marek
    Westin, Carl-Fredrik
    Stein, Murray B.
    Shenton, Martha E.
    Rathi, Yogesh
    [J]. BRAIN IMAGING AND BEHAVIOR, 2018, 12 (01) : 284 - 295
  • [9] Multi-site harmonization of 7 tesla MRI neuroimaging protocols
    Clarke, William T.
    Mougin, Olivier
    Driver, Ian D.
    Rua, Catarina
    Morgan, Andrew T.
    Asghar, Michael
    Clare, Stuart
    Francis, Susan
    Wise, Richard G.
    Rodgers, Christopher T.
    Carpenter, Adrian
    Muir, Keith
    Bowtell, Richard
    [J]. NEUROIMAGE, 2020, 206
  • [10] Exploration of scanning effects in multi-site structural MRI studies
    Chen, Jiayu
    Liu, Jingyu
    Calhoun, Vince D.
    Arias-Vasquez, Alejandro
    Zwiers, Marcel P.
    Gupta, Cota Navin
    Franke, Barbara
    Turner, Jessica A.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2014, 230 : 37 - 50