Lattice Monte Carlo simulations with two impurity worldlines

被引:0
|
作者
Fabian Hildenbrand
Serdar Elhatisari
Timo A. Lähde
Dean Lee
Ulf-G. Meißner
机构
[1] Forschungszentrum Jülich,Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics
[2] Gaziantep Islam Science and Technology University,Faculty of Natural Sciences and Engineering
[3] Universität Bonn,Helmholtz
[4] Michigan State University,Institut für Strahlen
[5] Tbilisi State University, und Kernphysik and Bethe Center for Theoretical Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop the impurity lattice Monte Carlo formalism for the case of two distinguishable impurities in a bath of polarized fermions. The majority particles are treated as explicit degrees of freedom, while the impurities are described by worldlines. The latter serve as localized auxiliary fields, which affect the majority particles. We apply the method to non-relativistic three-dimensional systems of two impurities and a number of majority particles where both the impurity–impurity interaction and the impurity–majority interaction have zero range. We consider the case of an attractive impurity–majority interaction, and we study the formation and disintegration of bound states as a function of the impurity–impurity interaction strength. We also discuss the potential applications of this formalism to other quantum many-body systems.
引用
收藏
相关论文
共 50 条
  • [31] Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model
    Assaad, FF
    PHYSICAL REVIEW LETTERS, 1999, 83 (04) : 796 - 799
  • [32] AN IMPROVED IONIZED-IMPURITY SCATTERING MODEL FOR MONTE-CARLO SIMULATIONS
    KAY, LE
    TANG, TW
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (03) : 1475 - 1482
  • [33] Athermal lattice polymers: A comparison of RISM theory and Monte Carlo simulations
    Janssen, RHC
    Nies, E
    Cifra, P
    MACROMOLECULES, 1997, 30 (20) : 6339 - 6347
  • [34] Steplike magnetization of spin chains in a triangular lattice: Monte Carlo simulations
    Yao, X. Y.
    Dong, S.
    Liu, J. -M.
    PHYSICAL REVIEW B, 2006, 73 (21):
  • [35] Monte Carlo Simulations of Lattice Gases Exhibiting Quantum Statistical Distributions
    Przenioslo, R.
    Barszczak, T.
    Kutner, R.
    Guzicki, W.
    Renz, W.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1991, 2 (01): : 450 - 454
  • [36] Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations
    Haley, Benjamin P.
    Beardmore, Keith M.
    Gronbech-Jensen, Niels
    PHYSICAL REVIEW B, 2006, 74 (04)
  • [37] Recent developments in Monte Carlo Simulations of lattice models for polymer systems
    Binder, K.
    Paul, W.
    MACROMOLECULES, 2008, 41 (13) : 4537 - 4550
  • [38] Statistics of collapsed lattice animals: Rigorous results and Monte Carlo simulations
    Stratychuk, LM
    Soteros, CE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7067 - 7087
  • [39] Lattice Monte Carlo simulations for the structure of precursors in polymer liquids.
    Shew, CY
    Chauhan, B
    Chen, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U388 - U388
  • [40] MONTE-CARLO SIMULATIONS OF VORTEX LINES IN A LATTICE LONDON MODEL
    CAVALCANTI, R
    CARNEIRO, G
    GARTNER, A
    EUROPHYSICS LETTERS, 1992, 17 (05): : 449 - 454