Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization

被引:0
|
作者
Andrzej Ruszczyński
机构
[1] Rutgers University,Department of Management Science and Information Systems
来源
Optimization Letters | 2020年 / 14卷
关键词
Stochastic subgradient method; Nonsmooth optimization; Generalized differentiable functions; Chain rule;
D O I
暂无
中图分类号
学科分类号
摘要
We prove convergence of a single time-scale stochastic subgradient method with subgradient averaging for constrained problems with a nonsmooth and nonconvex objective function having the property of generalized differentiability. As a tool of our analysis, we also prove a chain rule on a path for such functions.
引用
收藏
页码:1615 / 1625
页数:10
相关论文
共 50 条
  • [21] A subgradient-based neurodynamic algorithm to constrained nonsmooth nonconvex interval-valued optimization
    Liu, Jingxin
    Liao, Xiaofeng
    Dong, Jin-song
    Mansoori, Amin
    [J]. NEURAL NETWORKS, 2023, 160 : 259 - 273
  • [22] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Najmeh Hoseini Monjezi
    S. Nobakhtian
    [J]. Journal of Global Optimization, 2021, 79 : 1 - 37
  • [23] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Hoseini Monjezi, Najmeh
    Nobakhtian, S.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (01) : 1 - 37
  • [24] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    [J]. Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925
  • [25] A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization
    Dembele, Andre
    Ndiaye, Babacar M.
    Ouorou, Adam
    Degla, Guy
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 75 - 87
  • [26] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang, Yang
    Pang, Liping
    Ma, Xuefei
    Shen, Jie
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 900 - 925
  • [27] A descent subgradient method using Mifflin's line search for nonsmooth nonconvex optimization
    Maleknia, Morteza
    Soleimani-Damaneh, Majid
    [J]. OPTIMIZATION, 2024,
  • [28] Distributed stochastic nonsmooth nonconvex optimization
    Kungurtsev, Vyacheslav
    [J]. OPERATIONS RESEARCH LETTERS, 2022, 50 (06) : 627 - 631
  • [29] A FUNCTIONAL MODEL METHOD FOR NONCONVEX NONSMOOTH CONDITIONAL STOCHASTIC OPTIMIZATION
    Ruszczynski, Andrzej
    Yang, Shangzhe
    [J]. SIAM Journal on Optimization, 2024, 34 (03) : 3064 - 3087
  • [30] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31