On Homotopes of Novikov Algebras

被引:0
|
作者
V. A. Sereda
V. T. Filippov
机构
[1] Krasnoyarsk State Agrarian University,
[2] Sobolev Institute of Mathematics,undefined
关键词
Commutative Ring; Novikov Algebra; Associative Commutative Ring; Unital Associative Commutative Ring;
D O I
10.1023/A:1013888924634
中图分类号
学科分类号
摘要
Given a unital associative commutative ring Φ containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document}, we consider a homotope of a Novikov algebra, i.e., an algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A_\varphi $$ \end{document} that is obtained from a Novikov algebra A by means of the derived operation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \cdot y = xy\varphi $$ \end{document} on the Φ-module A, where the mapping ϕ satisfies the equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$xy\varphi = x(y\varphi )$$ \end{document}. We find conditions for a homotope of a Novikov algebra to be again a Novikov algebra.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条