Given a unital associative commutative ring Φ containing \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\frac{1}{2}$$
\end{document}, we consider a homotope of a Novikov algebra, i.e., an algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A_\varphi $$
\end{document} that is obtained from a Novikov algebra A by means of the derived operation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$x \cdot y = xy\varphi $$
\end{document} on the Φ-module A, where the mapping ϕ satisfies the equality \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$xy\varphi = x(y\varphi )$$
\end{document}. We find conditions for a homotope of a Novikov algebra to be again a Novikov algebra.
机构:
King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi ArabiaKing Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
Alhefthi, Reem K.
Siddiqui, Akhlaq A.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi ArabiaKing Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
Siddiqui, Akhlaq A.
Jamjoom, Fatmah B.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Coll Sci, Math Dept, POB 80200, Jeddah 21589, Saudi ArabiaKing Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia