Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine

被引:1
|
作者
Sung-Cheoul Roh
Seung-Hee Kang
机构
[1] Yanbian University of Science and Technology,Department of Materials, Mechanical and Automation Engineering
[2] Chonbuk National University,Department of Aerospace Engineering
关键词
Straight-type Darrieus VAWT; Multi-stream tube method; Blade profile; Reynolds number; Solidity; Power coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
This study investigates the effects of parameters such as a blade profile (changing the digit of the 4-digit NACA00xx airfoil), the Reynolds number, and the solidity on the performance characteristics of a straight bladed vertical axis wind turbine (VAWT). A numerical analysis, adopting the multiple stream tube (MST) method, is carried out to evaluate the performance depending on the parameters. The numerical result shows that the variation of a blade profile directly influences the power production, i.e., the high-digit NACA00xx airfoil provides higher power in a low speed zone (BSR < 3; BSR: blade speed ratio (ΩR/Uf), Ω: angular velocity of blade, R: radius of a straight Darrieus wind turbine, Uf: free stream velocity) than the low-digit NACA00xx profile. On the contrary, the low-digit NACA00xx airfoil produces higher power in a high speed range (BSR > 5) than the high-digit NACA00xx profile. An enhancement of the power production is observed with increasing the Reynolds number on the whole tested blade speed ratio range (1 < BSR < 12). In particular, the rate of the enhancement of the power is rapidly decreased with the increases of the Reynolds number (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re = {{\rho \bar U_r c} \mathord{\left/ {\vphantom {{\rho \bar U_r c} \mu }} \right. \kern-\nulldelimiterspace} \mu }$$\end{document}, ρ: air density, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar U_r$$\end{document}: mean resultant velocity acting on a blade with variable rotating speeds in a uniform free stream velocity (Uf), c: blade chord length, µ: air viscosity). For the effect of the solidity on the power production, a marked reduction of the range of the blade speed ratio that can provide the power is observed with increasing the solidity. A pattern of very steep variation of the power around the peak in the low speed zone (BSR < 3) is found in a high solidity range (σ > 0.3; σ: solidity (Nc/R), N: number of blade, c: chord length of an airfoil), and this tendency is conspicuously different from that of the eggbeater-type Darrieus VAWT, which is interpreted as a gradual variation of the power around the peak.
引用
下载
收藏
页码:3299 / 3307
页数:8
相关论文
共 50 条
  • [11] Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine
    Li-xun Zhang
    Ying-bin Liang
    Xiao-hong Liu
    Jian Guo
    Journal of Central South University, 2014, 21 : 1417 - 1427
  • [12] Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine
    Zhang Li-xun
    Liang Ying-bin
    Liu Xiao-hong
    Guo Jian
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (04) : 1417 - 1427
  • [13] Reynolds number effects on the aerodynamic performance of a vertical axis wind turbine
    Ruan, Zhi-Kun
    Zhou, Ming
    Zhang, Jie
    Fang, Zong-yi
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 1987, 8 (02): : 118 - 124
  • [14] Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade
    Li, Y.
    Zheng, Y. F.
    Feng, F.
    He, Q. B.
    Wang, N. X.
    2016 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM (NEFES 2016), 2016, 40
  • [15] High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements
    Peng, Yi-Xin
    Xu, You-Lin
    Zhan, Sheng
    Shum, Kei-Man
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 184 : 34 - 48
  • [16] High-solidity straight-bladed vertical axis wind turbine: Numerical simulation and validation
    Peng, Yi-Xin
    Xu, You-Lin
    Zhu, Songye
    Li, Chao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 193
  • [17] Effect of the number of blades and solidity on the performance of a vertical axis wind turbine
    Delafin, P. L.
    Nishino, T.
    Wang, L.
    Kolios, A.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [18] Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)
    Li, Qing'an
    Maeda, Takao
    Kamada, Yasunari
    Murata, Junsuke
    Shimizu, Kento
    Ogasawara, Tatsuhiko
    Nakai, Alisa
    Kasuya, Takuji
    RENEWABLE ENERGY, 2016, 96 : 928 - 939
  • [19] Study on the aerodynamic performance of blade airfoil of vertical axis wind turbine at low reynolds number
    Zhao, L.-H., 1600, Asian Network for Scientific Information (12):
  • [20] Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine
    Fiedler, Andrzej
    Tullis, Stephen
    WIND ENGINEERING, 2009, 33 (03) : 237 - 246