This study investigates the effects of parameters such as a blade profile (changing the digit of the 4-digit NACA00xx airfoil), the Reynolds number, and the solidity on the performance characteristics of a straight bladed vertical axis wind turbine (VAWT). A numerical analysis, adopting the multiple stream tube (MST) method, is carried out to evaluate the performance depending on the parameters. The numerical result shows that the variation of a blade profile directly influences the power production, i.e., the high-digit NACA00xx airfoil provides higher power in a low speed zone (BSR < 3; BSR: blade speed ratio (ΩR/Uf), Ω: angular velocity of blade, R: radius of a straight Darrieus wind turbine, Uf: free stream velocity) than the low-digit NACA00xx profile. On the contrary, the low-digit NACA00xx airfoil produces higher power in a high speed range (BSR > 5) than the high-digit NACA00xx profile. An enhancement of the power production is observed with increasing the Reynolds number on the whole tested blade speed ratio range (1 < BSR < 12). In particular, the rate of the enhancement of the power is rapidly decreased with the increases of the Reynolds number (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Re = {{\rho \bar U_r c} \mathord{\left/
{\vphantom {{\rho \bar U_r c} \mu }} \right.
\kern-\nulldelimiterspace} \mu }$$\end{document}, ρ: air density, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar U_r$$\end{document}: mean resultant velocity acting on a blade with variable rotating speeds in a uniform free stream velocity (Uf), c: blade chord length, µ: air viscosity). For the effect of the solidity on the power production, a marked reduction of the range of the blade speed ratio that can provide the power is observed with increasing the solidity. A pattern of very steep variation of the power around the peak in the low speed zone (BSR < 3) is found in a high solidity range (σ > 0.3; σ: solidity (Nc/R), N: number of blade, c: chord length of an airfoil), and this tendency is conspicuously different from that of the eggbeater-type Darrieus VAWT, which is interpreted as a gradual variation of the power around the peak.