Symmetry of the Time-Dependent Schrödinger Equation in Electromagnetic Fields Invariant Under Three-Dimensional Е(3) Subgroups

被引:0
|
作者
M. N. Boldyreva
A. A. Magazev
机构
[1] Omsk State Technical University,
来源
Russian Physics Journal | 2019年 / 62卷
关键词
time-dependent Schrödinger equation; symmetry operator; invariance group of electromagnetic field;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the classification of electromagnetic fields invariant under three-dimensional E(3) subgroups is given. For every electromagnetic field from this classification, all first-order symmetry operators commuting with the operator of the time-dependent Schrodinger equation are calculated.
引用
收藏
页码:224 / 231
页数:7
相关论文
共 50 条
  • [21] Exact solutions to three-dimensional time-dependent Schrodinger equation
    Chand, Fakir
    Mishra, S. C.
    PRAMANA-JOURNAL OF PHYSICS, 2007, 68 (06): : 891 - 900
  • [22] Simulation of spatiotemporal light dynamics based on the time-dependent Schrödinger equation
    Richter, Maria
    Morales, Felipe
    Patchkovskii, Serguei
    Husakou, Anton
    OPTICS EXPRESS, 2023, 31 (24) : 39941 - 39952
  • [23] Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation
    S. I. Vinitsky
    V. P. Gerdt
    A. A. Gusev
    M. S. Kaschiev
    V. A. Rostovtsev
    V. N. Samoylov
    T. V. Tupikova
    Y. Uwano
    Programming and Computer Software, 2006, 32 : 103 - 113
  • [24] Solutions of the Time-Dependent Schrödinger Equation for a Two-State System
    J. F. Ralph
    T. D. Clark
    H. Prance
    R. J. Prance
    A. Widom
    Y. N. Srivastava
    Foundations of Physics, 1998, 28 : 1271 - 1282
  • [25] Dunkl-Schrödinger Equation with Time-Dependent Harmonic Oscillator Potential
    Benchikha, A.
    Hamil, B.
    Lutfuoglu, B. C.
    Khantoul, B.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (10)
  • [26] Asymptotic behavior for a dissipative nonlinear Schrödinger equation with time-dependent damping
    Chourouk Bamri
    Boletín de la Sociedad Matemática Mexicana, 2025, 31 (1)
  • [27] Asymptotics of solutions to the time-dependent Schrödinger equation with a small Planck constant
    Omuraliev A.S.
    Computational Mathematics and Mathematical Physics, 2007, 47 (10) : 1675 - 1680
  • [28] Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials
    M. Goldberg
    Geometric & Functional Analysis GAFA, 2006, 16 : 517 - 536
  • [29] Lie Symmetry Analysis of the Nonlinear Schrödinger Equation with Time Dependent Variable Coefficients
    Devi P.
    Singh K.
    International Journal of Applied and Computational Mathematics, 2021, 7 (1)
  • [30] Three-dimensional spectral solution of the Schrödinger equation for arbitrary band structures
    Trellakis, A.
    Ravaioli, U.
    1600, American Institute of Physics Inc. (92):