Symmetry of the Time-Dependent Schrödinger Equation in Electromagnetic Fields Invariant Under Three-Dimensional Е(3) Subgroups

被引:0
|
作者
M. N. Boldyreva
A. A. Magazev
机构
[1] Omsk State Technical University,
来源
Russian Physics Journal | 2019年 / 62卷
关键词
time-dependent Schrödinger equation; symmetry operator; invariance group of electromagnetic field;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the classification of electromagnetic fields invariant under three-dimensional E(3) subgroups is given. For every electromagnetic field from this classification, all first-order symmetry operators commuting with the operator of the time-dependent Schrodinger equation are calculated.
引用
收藏
页码:224 / 231
页数:7
相关论文
共 50 条
  • [1] Symmetry of the Time-Dependent Schrodinger Equation in Electromagnetic Fields Invariant Under Three-Dimensional ?(3) Subgroups
    Boldyreva, M. N.
    Magazev, A. A.
    RUSSIAN PHYSICS JOURNAL, 2019, 62 (02) : 224 - 231
  • [2] Exact solutions to three-dimensional time-dependent Schrödinger equation
    Fakir Chand
    S. C. Mishra
    Pramana, 2007, 68 : 891 - 900
  • [3] On the Derivation of the Time-Dependent Equation of Schrödinger
    John S. Briggs
    Jan M. Rost
    Foundations of Physics, 2001, 31 : 693 - 712
  • [4] Time-dependent variational approach to solve multi-dimensional time-dependent Schrödinger equation
    He, Mingrui
    Wang, Zhe
    Yao, Lufeng
    Li, Yang
    CHINESE PHYSICS B, 2023, 32 (12)
  • [5] Time-dependent variational approach to solve multi-dimensional time-dependent Schr?dinger equation
    何明睿
    王哲
    姚陆锋
    李洋
    Chinese Physics B, 2023, 32 (12) : 414 - 419
  • [6] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [7] Exponential fitting method for the time-dependent Schrödinger equation
    M. Rizea
    Journal of Mathematical Chemistry, 2010, 48 : 55 - 65
  • [8] Analysis of the “Toolkit” Method for the Time-Dependent Schrödinger Equation
    Lucie Baudouin
    Julien Salomon
    Gabriel Turinici
    Journal of Scientific Computing, 2011, 49 : 111 - 136
  • [9] Solution of the Schrödinger equation for the time-dependent linear potential
    Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03): : 341021 - 341023
  • [10] Fractional time-dependent Schrödinger equation on the Heisenberg group
    Roman Urban
    Jacek Zienkiewicz
    Mathematische Zeitschrift, 2008, 260 : 931 - 948