A coordinate descent algorithm for computing penalized smooth quantile regression

被引:0
|
作者
Abdallah Mkhadri
Mohamed Ouhourane
Karim Oualkacha
机构
[1] Cadi Ayyad University,Department of Mathematics
[2] Université du Québec À Montréal,Department of Mathematics
来源
Statistics and Computing | 2017年 / 27卷
关键词
Variable selection; Quantile regression; Smooth check function; Coordinate descent algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The computation of penalized quantile regression estimates is often computationally intensive in high dimensions. In this paper we propose a coordinate descent algorithm for computing the penalized smooth quantile regression (cdaSQR) with convex and nonconvex penalties. The cdaSQR approach is based on the approximation of the objective check function, which is not differentiable at zero, by a modified check function which is differentiable at zero. Then, using the maximization-minimization trick of the gcdnet algorithm (Yang and Zou in, J Comput Graph Stat 22(2):396–415, 2013), we update each coefficient simply and efficiently. In our implementation, we consider the convex penalties ℓ1+ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1+\ell _2$$\end{document} and the nonconvex penalties SCAD (or MCP) +ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+ \ell _2$$\end{document}. We establishe the convergence property of the csdSQR with ℓ1+ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1+\ell _2$$\end{document} penalty. The numerical results show that our implementation is an order of magnitude faster than its competitors. Using simulations we compare the speed of our algorithm to its competitors. Finally, the performance of our algorithm is illustrated on three real data sets from diabetes, leukemia and Bardet–Bidel syndrome gene expression studies.
引用
收藏
页码:865 / 883
页数:18
相关论文
共 50 条