Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression

被引:89
|
作者
Yi, Congrui [1 ]
Huang, Jian [1 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
关键词
Elastic-net; High-dimensional data; Nonsmooth optimization; Robust regression; Solution path; REGULARIZATION PATHS; ROBUST REGRESSION; LASSO; SELECTION; OPTIMIZATION;
D O I
10.1080/10618600.2016.1256816
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an algorithm, semismooth Newton coordinate descent (SNCD), for the elastic-net penalized Huber loss regression and quantile regression in high dimensional settings. Unlike existing coordinate descent type algorithms, the SNCD updates a regression coefficient and its corresponding subgradient simultaneously in each iteration. It combines the strengths of the coordinate descent and the semismooth Newton algorithm, and effectively solves the computational challenges posed by dimensionality and nonsmoothness. We establish the convergence properties of the algorithm. In addition, we present an adaptive version of the strong rule for screening predictors to gain extra efficiency. Through numerical experiments, we demonstrate that the proposed algorithm is very efficient and scalable to ultrahigh dimensions. We illustrate the application via a real data example. Supplementary materials for this article are available online.
引用
收藏
页码:547 / 557
页数:11
相关论文
共 50 条
  • [1] A coordinate descent algorithm for computing penalized smooth quantile regression
    Mkhadri, Abdallah
    Ouhourane, Mohamed
    Oualkacha, Karim
    [J]. STATISTICS AND COMPUTING, 2017, 27 (04) : 865 - 883
  • [2] A coordinate descent algorithm for computing penalized smooth quantile regression
    Abdallah Mkhadri
    Mohamed Ouhourane
    Karim Oualkacha
    [J]. Statistics and Computing, 2017, 27 : 865 - 883
  • [3] An elastic-net penalized expectile regression with applications
    Xu, Q. F.
    Ding, X. H.
    Jiang, C. X.
    Yu, K. M.
    Shi, L.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (12) : 2205 - 2230
  • [4] Elastic net penalized quantile regression model
    Su, Meihong
    Wang, Wenjian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [5] An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression
    Peng, Bo
    Wang, Lan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 676 - 694
  • [6] Coordinate majorization descent algorithm for nonconvex penalized regression
    Wang, Yanxin
    Zhu, Li
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (13) : 2684 - 2698
  • [7] A PROXIMAL DUAL SEMISMOOTH NEWTON METHOD FOR ZERO-NORM PENALIZED QUANTILE REGRESSION ESTIMATOR
    Zhang, Dongdong
    Pan, Shaohua
    Bi, Shujun
    [J]. STATISTICA SINICA, 2022, 32 (02) : 1121 - 1141
  • [8] Low-rank elastic-net regularized multivariate Huber regression model
    Chen, Bingzhen
    Zhai, Wenjuan
    Huang, Zhiyong
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 87 : 571 - 583
  • [9] Adaptive elastic net-penalized quantile regression for variable selection
    Yan, Ailing
    Song, Fengli
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (20) : 5106 - 5120
  • [10] COORDINATE DESCENT ALGORITHMS FOR LASSO PENALIZED REGRESSION
    Wu, Tong Tong
    Lange, Kenneth
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (01): : 224 - 244