Estimating Stochastic Dynamical Systems Driven by a Continuous-Time Jump Markov Process

被引:0
|
作者
Julien Chiquet
Nikolaos Limnios
机构
[1] Université de Technologie de Compiègne,
[2] Centre de Recherche de Royallieu,undefined
[3] LMAC,undefined
[4] Commissariat à l’Énergie Atomique,undefined
[5] Centre de Recherche de Saclay,undefined
[6] DM2S/SERMA/LCA,undefined
关键词
Stochastic dynamical system; Markov process; Estimation; Fatigue crack growth; 60H10; 60K40; 62M05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the use of a continuous-time jump Markov process as the driving process in stochastic differential systems. Results are given on the estimation of the infinitesimal generator of the jump Markov process, when considering sample paths on random time intervals. These results are then applied within the framework of stochastic dynamical systems modeling and estimation. Numerical examples are given to illustrate both consistency and asymptotic normality of the estimator of the infinitesimal generator of the driving process. We apply these results to fatigue crack growth modeling as an example of a complex dynamical system, with applications to reliability analysis.
引用
收藏
页码:431 / 447
页数:16
相关论文
共 50 条
  • [21] On the stability radii of continuous-time infinite Markov jump linear systems
    Todorov, Marcos G.
    Fragoso, Marcelo Dutra
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2010, 22 (01) : 23 - 38
  • [22] On the Filtering Problem for Continuous-Time Markov Jump Linear Systems with no Observation of the Markov Chain
    do Valle Costa, Oswaldo Luiz
    Fragoso, Marcelo Dutra
    Todorov, Marcos Garcia
    EUROPEAN JOURNAL OF CONTROL, 2011, 17 (04) : 339 - 354
  • [23] A formulation for fault detection in stochastic continuous-time dynamical systems
    Zufiria, Pedro J.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (10-11) : 1778 - 1797
  • [24] Fault Detection Schemes for Continuous-Time Stochastic Dynamical Systems
    Castillo, Angela
    Zufiria, Pedro J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (08) : 1820 - 1836
  • [25] Stochastic stability and optimal control for a class of continuous-time Markov jump linear systems with horizon defined by a stopping time
    Nespoli, Cristiane
    Caceres, Yusef
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 7752 - 7758
  • [26] ESTIMATING THE INFINITESIMAL GENERATOR OF A FINITE STATE CONTINUOUS-TIME MARKOV PROCESS
    ALBERT, A
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (03): : 811 - 811
  • [27] ESTIMATING INFINITESIMAL GENERATOR OF A CONTINUOUS-TIME, FINITE STATE MARKOV PROCESS
    ALBERT, A
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 727 - &
  • [28] Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
    Kohs, Lukas
    Alt, Bastian
    Koeppl, Heinz
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [29] Characterization of Mean-Field Type H_ Index for Continuous-Time Stochastic Systems with Markov Jump
    Ma, Limin
    Song, Caixia
    Zhang, Weihai
    Liu, Zhenbin
    PROCESSES, 2022, 10 (08)
  • [30] Discussion on: "On the Filtering Problem for Continuous-Time Markov Jump Linear Systems with no Observation of the Markov Chain"
    Shi, Peng
    Liu, Ming
    EUROPEAN JOURNAL OF CONTROL, 2011, 17 (04) : 355 - 356