Estimating Stochastic Dynamical Systems Driven by a Continuous-Time Jump Markov Process

被引:0
|
作者
Julien Chiquet
Nikolaos Limnios
机构
[1] Université de Technologie de Compiègne,
[2] Centre de Recherche de Royallieu,undefined
[3] LMAC,undefined
[4] Commissariat à l’Énergie Atomique,undefined
[5] Centre de Recherche de Saclay,undefined
[6] DM2S/SERMA/LCA,undefined
关键词
Stochastic dynamical system; Markov process; Estimation; Fatigue crack growth; 60H10; 60K40; 62M05;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the use of a continuous-time jump Markov process as the driving process in stochastic differential systems. Results are given on the estimation of the infinitesimal generator of the jump Markov process, when considering sample paths on random time intervals. These results are then applied within the framework of stochastic dynamical systems modeling and estimation. Numerical examples are given to illustrate both consistency and asymptotic normality of the estimator of the infinitesimal generator of the driving process. We apply these results to fatigue crack growth modeling as an example of a complex dynamical system, with applications to reliability analysis.
引用
收藏
页码:431 / 447
页数:16
相关论文
共 50 条
  • [1] Estimating stochastic dynamical systems driven by a continuous-time jump Markov process
    Chiquet, Julien
    Limnios, Nikolaos
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2006, 8 (04) : 431 - 447
  • [2] On observability and detectability of continuous-time stochastic Markov jump systems
    Tan Cheng
    Zhang Weihai
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (04) : 830 - 847
  • [3] On Observability and Detectability of Continuous-Time Stochastic Markov Jump Systems
    TAN Cheng
    ZHANG Weihai
    Journal of Systems Science & Complexity, 2015, 28 (04) : 830 - 847
  • [4] On observability and detectability of continuous-time stochastic Markov jump systems
    Cheng Tan
    Weihai Zhang
    Journal of Systems Science and Complexity, 2015, 28 : 830 - 847
  • [5] Optimal control for continuous-time Markov jump systems
    Engineering College, Air Force Engineering University, Xi'an 710038, China
    Kongzhi yu Juece Control Decis, 2013, 3 (396-401):
  • [6] H_ index for continuous-time stochastic systems with Markov jump and multiplicative noise
    Liu, Xikui
    Zhang, Weihai
    Li, Yan
    AUTOMATICA, 2019, 105 : 167 - 178
  • [7] Circle Criterion for Continuous-Time Markov Jump MIMO Systems
    Moreira da Silva, Lucas Porrelli
    de Castro Goncalves, Alim Pedro
    IFAC PAPERSONLINE, 2017, 50 (01): : 3806 - 3810
  • [8] On the stability radii of continuous-time Markov jump linear systems
    Todorov, Marcos G.
    Fragoso, Marcelo D.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4621 - 4626
  • [9] Stabilization of a class of continuous-time singular Markov jump systems
    Chang, Hua
    Fang, Yang-Wang
    Lou, Shun-Tian
    Chen, Jia
    Kongzhi yu Juece/Control and Decision, 2012, 27 (05): : 641 - 645
  • [10] On the observability and detectability of continuous-time Markov jump linear systems
    Costa, EF
    do Val, JBR
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1994 - 1999