On Uniform Exponential Trichotomy of Evolution Operators in Banach Spaces

被引:0
|
作者
Mihail Megan
Codruţa Stoica
机构
[1] West University of Timişoara,Faculty of Mathematics
[2] Aurel Vlaicu University of Arad,Department of Mathematics
来源
关键词
Primary 34D05, 34D09, 93D20; Nonlinear evolution operators; exponential stability; exponential dichotomy; exponential trichotomy;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents necessary and sufficient conditions for uniform exponential trichotomy of nonlinear evolution operators in Banach spaces. Thus are obtained results which extend well-known results for uniform exponential stability in the linear case.
引用
收藏
页码:499 / 506
页数:7
相关论文
共 50 条
  • [31] UNIFORM EXPONENTIAL STABILITY OF LINEAR ALMOST PERIODIC SYSTEMS IN BANACH SPACES
    Cheban, D. N.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [32] On (h, k)-Instabilities of Evolution Operators in Banach Spaces
    Minda, Andrea Amalia
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 444 - 447
  • [33] On (h, k)-stability of evolution operators in Banach spaces
    Minda, Andrea Amalia
    Megan, Mihail
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (01) : 44 - 48
  • [34] EXPONENTIAL INSTABILITY OF SKEW-EVOLUTION SEMIFLOWS IN BANACH SPACES
    Megan, Mihail
    Stoica, Codruta
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (01): : 17 - 24
  • [35] Exponential instability of skew-evolution semiflows in Banach spaces
    Mihaela, Tomescia
    Amalia, Minda Andrea
    Victoria, Anghel Cornelia
    Paraschiva, Popovici
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2009, : 976 - +
  • [36] Exponential stability of skew-evolution semiflows in Banach spaces
    Amalia, Minda Andrea
    Mihaela, Tomescu
    Cornelia, Anghel
    Diana, Stoica
    [J]. INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATIONS, PROCEEDINGS, 2009, : 256 - +
  • [37] Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces
    Yoshimoto, T
    [J]. STUDIA MATHEMATICA, 2000, 141 (01) : 69 - 83
  • [38] On uniform exponential stability of linear skew-product semiflows in Banach spaces
    Megan, M
    Sasu, AL
    Sasu, B
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (01) : 143 - 154
  • [39] Persistence of Exponential Trichotomy for Linear Operators: A Lyapunov–Perron Approach
    A. Ducrot
    P. Magal
    O. Seydi
    [J]. Journal of Dynamics and Differential Equations, 2016, 28 : 93 - 126
  • [40] Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
    Kobayashi, Yoshikazu
    Tanaka, Naoki
    Tomizawa, Yukino
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2015, 45 (03) : 267 - 307