On the stability radii of continuous-time infinite Markov jump linear systems

被引:0
|
作者
Marcos G. Todorov
Marcelo Dutra Fragoso
机构
[1] LNCC/MCT,National Laboratory for Scientific Computing
关键词
Stability radii; Robust stability; Continuous-time Markov jump linear systems; Switching systems; Uncertain systems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce the subject of stability radii for continuous-time infinite Markov jump linear systems (MJLS) with respect to unstructured perturbations. By means of the small-gain approach, a lower bound for the complex radius is derived along with a linear matrix inequality (LMI) optimization method which is new in this context. In this regard, we propose an algorithm to solve the optimization problem, based on a bisectional procedure, which is tailored in such a way that avoids the issue of scaling optimization. In addition, an easily computable upper bound for the real and complex stability radii is devised, with the aid of a spectral characterization of the problem. This seems to be a novel approach to the problem of robust stability, even when restricted to the finite case, which in turn allows us to obtain explicit formulas for the stability radii of two-mode scalar MJLS. We also introduce a connection between stability radii and a certain margin of stability with respect to perturbations on the transition rates of the Markov process. The applicability of the main results is illustrated with some numerical examples.
引用
收藏
页码:23 / 38
页数:15
相关论文
共 50 条