Sharp Estimates of High-Order Derivatives in Sobolev Spaces

被引:0
|
作者
Garmanova, T. A. [1 ,2 ]
Sheipak, I. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Chair Theory Funct & Funct Anal, Moscow, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
estimates of derivatives; Kolmogorov type inequalities; Sobolev spaces; embedding theorems; approximation by polynomials; INTEGRAL APPROXIMATION;
D O I
10.3103/S0027132224700013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper describes the splines Q(n,k)(x, a), which define the relations y((k))(a) = integral(1)(0) y((n))(x)Q(n,k)((n)) (x, a)dx for an arbitrary point alpha is an element of(0; 1) and an arbitrary function y is an element of W-p(n)[0; 1]. The connection of the minimization of the norm ||Q(n,k)((n))|| L-p' [0;1] (1/p + 1/ p' = 1) by parameter a with the problem of best estimates for derivatives |y((k))(a)| <= A(n, k,p)(a)||y((n)) || L-p[0;1], and also with the problem of finding the exact embedding constants of the Sobolev space W-p(n)[0; 1] into the space W-infinity(k) [0; 1], n is an element of N, 0 <= k <= n - 1. Exact embedding constants are found for all n is an element of N, k = n - 1 for p = 1 and for p = infinity.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] High-order nonreflecting boundary conditions without high-order derivatives
    Givoli, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) : 849 - 870
  • [22] The sharp Sobolev type inequalities in the Lorentz-Sobolev spaces in the hyperbolic spaces
    Van Hoang Nguyen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [23] Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
    Garmanova, T. A.
    Sheipak, I. A.
    DOKLADY MATHEMATICS, 2019, 100 (01) : 367 - 371
  • [24] Properties of Extrema of Estimates for Middle Derivatives of Odd Order in Sobolev Classes
    T. A. Garmanova
    I. A. Sheipak
    Doklady Mathematics, 2019, 100 : 367 - 371
  • [25] SHARP POINTWISE ESTIMATES FOR FUNCTIONS IN THE SOBOLEV SPACES H-s(R-n)
    Schutz, Lineia
    Ziebell, Juliana S.
    Zingano, Janaina P.
    Zingano, Paulo R.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2015, 16 (01): : 45 - 53
  • [26] Sharp Sobolev inequalities of second order
    Emmanuel Hebey
    The Journal of Geometric Analysis, 2003, 13 (1): : 145 - 162
  • [27] ORDER ESTIMATES FOR THE KOLMOGOROV WIDTHS OF WEIGHTED SOBOLEV CLASSES WITH RESTRICTIONS ON DERIVATIVES
    Vasil'eva, A. A.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (04): : 95 - 100
  • [28] A sharp higher order Sobolev embedding
    Hindov, Raul
    Nitzan, Shahaf
    Olsen, Jan-Fredrik
    Rydhe, Eskil
    MATHEMATIKA, 2025, 71 (02)
  • [29] On sharp higher order sobolev embeddings
    Milman, M
    Pustylnik, E
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (03) : 495 - 511
  • [30] Error and work estimates for high-order elements
    Loehner, Rainald
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (12) : 2184 - 2188