Sharp Estimates of High-Order Derivatives in Sobolev Spaces

被引:0
|
作者
Garmanova, T. A. [1 ,2 ]
Sheipak, I. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Chair Theory Funct & Funct Anal, Moscow, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
estimates of derivatives; Kolmogorov type inequalities; Sobolev spaces; embedding theorems; approximation by polynomials; INTEGRAL APPROXIMATION;
D O I
10.3103/S0027132224700013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper describes the splines Q(n,k)(x, a), which define the relations y((k))(a) = integral(1)(0) y((n))(x)Q(n,k)((n)) (x, a)dx for an arbitrary point alpha is an element of(0; 1) and an arbitrary function y is an element of W-p(n)[0; 1]. The connection of the minimization of the norm ||Q(n,k)((n))|| L-p' [0;1] (1/p + 1/ p' = 1) by parameter a with the problem of best estimates for derivatives |y((k))(a)| <= A(n, k,p)(a)||y((n)) || L-p[0;1], and also with the problem of finding the exact embedding constants of the Sobolev space W-p(n)[0; 1] into the space W-infinity(k) [0; 1], n is an element of N, 0 <= k <= n - 1. Exact embedding constants are found for all n is an element of N, k = n - 1 for p = 1 and for p = infinity.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条