Predicting cognitive decline in a low-dimensional representation of brain morphology

被引:0
|
作者
Rémi Lamontagne-Caron
Patrick Desrosiers
Olivier Potvin
Nicolas Doyon
Simon Duchesne
机构
[1] Université Laval,Département de médecine
[2] Centre de recherche CERVO,Centre interdisciplinaire en modélisation mathématique
[3] Université Laval,Département de physique, de génie physique et d’optique
[4] Université Laval,Département de mathématiques et de statistique
[5] Université Laval,Département de radiologie et médecine nucléaire
[6] Université Laval,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Identifying early signs of neurodegeneration due to Alzheimer’s disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18–100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}), one year apart. The first embedding’s principal axis was shown to be positively associated (r=0.65\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 0.65$$\end{document}) with participants’ age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
引用
收藏
相关论文
共 50 条
  • [21] Low-dimensional manifolds for exact representation of open quantum systems
    Tezak, Nikolas
    Amini, Nina H.
    Mabuchi, Hideo
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [22] An influence maximization algorithm based on low-dimensional representation learning
    Yuening Liu
    Liqing Qiu
    Chengai Sun
    Applied Intelligence, 2022, 52 : 15865 - 15882
  • [23] LDR-LLE: LLE with Low-Dimensional Neighborhood Representation
    Goldberg, Yair
    Ritov, Ya'acov
    ADVANCES IN VISUAL COMPUTING, PT II, PROCEEDINGS, 2008, 5359 : 43 - +
  • [24] QUADRATIC DISCRIMINATION - SOME RESULTS ON OPTIMAL LOW-DIMENSIONAL REPRESENTATION
    YOUNG, DM
    MARCO, VR
    ODELL, PL
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1987, 17 (03) : 307 - 319
  • [25] Low-dimensional facial image representation using FLD and MDS
    Choi, J
    Yi, J
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 223 - 232
  • [26] LOW-DIMENSIONAL REPRESENTATION OF FACES IN HIGHER DIMENSIONS OF THE FACE SPACE
    OTOOLE, AJ
    ABDI, H
    DEFFENBACHER, KA
    VALENTIN, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (03): : 405 - 411
  • [27] Learning Interpretable Low-dimensional Representation via Physical Symmetry
    Liu, Xuanjie
    Chin, Daniel
    Huang, Yichen
    Xia, Gus
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] A low-dimensional representation for robust partial isometric correspondences computation
    Brunton, Alan
    Wand, Michael
    Wuhrer, Stefanie
    Seidel, Hans-Peter
    Weinkauf, Tino
    GRAPHICAL MODELS, 2014, 76 : 70 - 85
  • [30] A low-dimensional representation of the structure of real world scenes.
    Torralba, A
    Oliva, A
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2000, 41 (04) : S723 - S723