Tree wavelet approximations with applications

被引:0
|
作者
Yuesheng Xu
Qingsong Zou
机构
[1] Syracuse University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and System Sciences
[3] Zhongshan University,Department of Scientific Computing and Computer Science
来源
关键词
greedy algorithms; tree wavelet approximations; Besov spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a tree wavelet approximation by using a constructive greedy scheme (CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.
引用
收藏
页码:680 / 702
页数:22
相关论文
共 50 条
  • [21] Improved Approximations for Tour and Tree Covers
    Jochen Könemann
    Goran Konjevod
    Ojas Parekh
    Amitabh Sinha
    Algorithmica , 2004, 38 : 441 - 449
  • [22] Tree approximations of dynamic stochastic programs
    Mirkov, Radoslava
    Pflug, Georg Ch.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) : 1082 - 1105
  • [23] Equational approximations for tree automata completion
    Genet, Thomas
    Rusu, Vlad
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (05) : 574 - 597
  • [24] Approximations for a Bottleneck Steiner Tree Problem
    Algorithmica, 2002, 32 : 554 - 561
  • [25] Approximations for a bottleneck Steiner tree problem
    Wang, L
    Du, DZ
    ALGORITHMICA, 2002, 32 (04) : 554 - 561
  • [26] Tight frame approximations for Gabor and wavelet frames
    Han, DG
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IX, 2001, 4478 : 135 - 141
  • [27] Robust designs for wavelet approximations of regression models
    Oyet, AJ
    Wiens, DP
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (06) : 837 - 859
  • [28] Decision tree approximations of Boolean functions
    Mehta, D
    Raghavan, V
    THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) : 609 - 623
  • [29] Approximations of the inverse wavelet transform for analogue circuits
    Gurrola-Navarro, Marco A.
    Medina-Vazquez, Agustin S.
    Espinosa-Flores-Verdad, Guillermo
    IEICE ELECTRONICS EXPRESS, 2012, 9 (24): : 1823 - 1828
  • [30] Bandwidth efficient digital communication with wavelet approximations
    Lo, C
    Moon, TK
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2002, 4 (02) : 97 - 101