Magnetic susceptibility of the square lattice Ising model

被引:0
|
作者
Tuncer Kaya
机构
[1] Yildiz Technical University,Department of Physics
来源
The European Physical Journal Plus | / 137卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we obtained an analytical relation for the susceptibility of the square lattice Ising model. Our investigation is based on an average magnetization interrelation which was recently obtained by us. To proceed further, we have to make a mathematical conjecture about the three-site correlation function appearing in the average magnetization interrelation. We presented the conjectured mathematical form of the three spin correlation function with the relation, ⟨σ1σ2σ3⟩=a(K,H)⟨σ⟩+[1-a(K,H)]⟨σ⟩(1+β-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma _{1}\sigma _{2}\sigma _{3}\rangle =a(K,H)\langle \sigma \rangle +[1-a(K,H)]\langle \sigma \rangle ^{(1+\beta ^{-1})}$$\end{document}. Here, β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} denotes the critical exponent for the average magnetization and a(K, H) is a function whose behavior will be described around the critical point with an arbitrary constant. To elucidate the relevance of the method, we have first calculated the susceptibility of the 1D chain as an example, and the obtained susceptibility expression for the 1D chain is equivalent to the result of the susceptibility obtained by the conventional method. Applying the same method, we obtained the values of the magnetic critical exponent γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} of the square lattice Ising model. The values of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} are obtained as γ=1.72\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =1.72$$\end{document} for T>Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\!>\!T_{c}$$\end{document}, and γ=0.91\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =0.91$$\end{document} for T<Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\!<\!T_{c}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] FULLY FRUSTRATED ISING-MODEL ON A SQUARE LATTICE
    HORIGUCHI, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1986, (87): : 33 - 42
  • [22] Phase transitions in the frustrated Ising model on the square lattice
    Jin, Songbo
    Sen, Arnab
    Guo, Wenan
    Sandvik, Anders W.
    PHYSICAL REVIEW B, 2013, 87 (14)
  • [23] RANDOMLY DECORATED ISING-MODEL ON THE SQUARE LATTICE
    COSTA, MA
    GONCALVES, LL
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 140 : 2193 - 2194
  • [24] Thermodynamic equilibrium of ±J Ising model on square lattice
    Trukhin, V. O.
    Strongin, V. S.
    Chesnokov, M. A.
    Makarov, A. G.
    Lobanova, E. A.
    Shevchenko, Y. A.
    Nefedev, K. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 655
  • [25] Frustrated Ising model with competing interactions on a square lattice
    Lee, Jae Hwan
    Kim, Seung-Yeon
    Kim, Jin Min
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [26] The magnetic susceptibility of two-dimensional Ising model on a finite-size lattice
    Bugrij, AI
    Lisovyy, OO
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 94 (06) : 1140 - 1148
  • [27] The magnetic susceptibility of two-dimensional Ising model on a finite-size lattice
    A. I. Bugrij
    O. O. Lisovyy
    Journal of Experimental and Theoretical Physics, 2002, 94 : 1140 - 1148
  • [28] CRITICAL LINE OF THE SQUARE-LATTICE ANTIFERROMAGNETIC ISING-MODEL IN A MAGNETIC-FIELD
    WU, XN
    WU, FY
    PHYSICS LETTERS A, 1990, 144 (03) : 123 - 126
  • [29] Reentrance of the Disordered Phase in the Antiferromagnetic Ising Model on a Square Lattice with Longitudinal and Transverse Magnetic Fields
    Kaneko, Ryui
    Douda, Yoshihide
    Goto, Shimpei
    Danshita, Ippei
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (07)
  • [30] FINITE SUSCEPTIBILITY OF THE ISING-MODEL ON A HIERARCHICAL LATTICE
    RIERA, JA
    PHYSICAL REVIEW B, 1986, 33 (11): : 7790 - 7791