A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains

被引:0
|
作者
Ning Du
Hai-Wei Sun
Hong Wang
机构
[1] Shandong University,School of Mathematics
[2] University of Macau,Department of Mathematics
[3] University of South Carolina,Department of Mathematics
来源
关键词
Anomalous diffusion; Finite difference method; Space-fractional diffusion equation; Circulant preconditioner; Penalization; 35R05; 65F08; 65F10; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
A fast finite difference method is developed for solving space-fractional diffusion equations with variable coefficient in convex domains using a volume penalization approach. The resulting coefficient matrix can be written as the discretized matrix from the extended rectangular domain plus a diagonal matrix with jumping entries due to the penalization parameter. An efficient preconditioner is constructed based on the combination of two approximate inverse circulant matrices. The preconditioned BiCGSTAB method, with the proposed preconditioner, is implemented for solving the resulting linear system. Numerical results are carried out to demonstrate the utility of the proposed algorithm.
引用
收藏
相关论文
共 50 条
  • [41] Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sormani, Rosita Luisa
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (03)
  • [42] Numerical analysis of a linear second-order finite difference scheme for space-fractional Allen–Cahn equations
    Kai Wang
    Jundong Feng
    Hongbo Chen
    Changling Xu
    [J]. Advances in Continuous and Discrete Models, 2022
  • [43] Finite difference approximation of space-fractional diffusion problems: The matrix transformation method
    Szekeres, Bela J.
    Izsak, Ferenc
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (02) : 261 - 269
  • [44] Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity
    Zhaopeng Hao
    Wanrong Cao
    Shengyue Li
    [J]. Numerical Algorithms, 2021, 86 : 1071 - 1087
  • [45] Numerical simulation for the space-fractional diffusion equations
    Kheybari, Samad
    Darvishi, Mohammad Taghi
    Hashemi, Mir Sajjad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 57 - 69
  • [46] Particle simulation of space-fractional diffusion equations
    Lucchesi, M.
    Allouch, S.
    Le Maitre, O. P.
    Mustapha, K. A.
    Knio, O. M.
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (03) : 491 - 507
  • [47] Multidimensional solutions of space-fractional diffusion equations
    Hanyga, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016): : 2993 - 3005
  • [48] Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity
    Hao, Zhaopeng
    Cao, Wanrong
    Li, Shengyue
    [J]. NUMERICAL ALGORITHMS, 2021, 86 (03) : 1071 - 1087
  • [49] A Fast Finite Difference Method for Tempered Fractional Diffusion Equations
    Guo, Xu
    Li, Yutian
    Wang, Hong
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (02) : 531 - 556
  • [50] Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients
    Lin, Xue-lei
    Ng, Michael K.
    Sun, Hai-Wei
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 1102 - 1127