Translativity of beta-type functions

被引:0
|
作者
Tomasz Małolepszy
Janusz Matkowski
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Aequationes mathematicae | 2023年 / 97卷
关键词
Beta-type function; Translativity; Functional equation; Primary 39B22;
D O I
暂无
中图分类号
学科分类号
摘要
Translativity of the beta-type function Bf:I2→0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{f}:I^{2}\rightarrow \left( 0,\infty \right) $$\end{document}, Bfx,y:=fxfyfx+y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{f}\left( x,y\right) :=\frac{f\left( x\right) f\left( y\right) }{f\left( x+y\right) }, \end{aligned}$$\end{document}where f is a single variable function defined either on I=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I={\mathbb {R}}$$\end{document} or I=[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=[ 0,\infty )$$\end{document}, or I=0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=\left( 0,\infty \right) $$\end{document}, is considered. In each of these three cases a complete solution is given.
引用
收藏
页码:121 / 132
页数:11
相关论文
共 50 条