Translativity of beta-type functions

被引:0
|
作者
Tomasz Małolepszy
Janusz Matkowski
机构
[1] University of Zielona Góra,Institute of Mathematics
来源
Aequationes mathematicae | 2023年 / 97卷
关键词
Beta-type function; Translativity; Functional equation; Primary 39B22;
D O I
暂无
中图分类号
学科分类号
摘要
Translativity of the beta-type function Bf:I2→0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{f}:I^{2}\rightarrow \left( 0,\infty \right) $$\end{document}, Bfx,y:=fxfyfx+y,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{f}\left( x,y\right) :=\frac{f\left( x\right) f\left( y\right) }{f\left( x+y\right) }, \end{aligned}$$\end{document}where f is a single variable function defined either on I=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I={\mathbb {R}}$$\end{document} or I=[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=[ 0,\infty )$$\end{document}, or I=0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=\left( 0,\infty \right) $$\end{document}, is considered. In each of these three cases a complete solution is given.
引用
收藏
页码:121 / 132
页数:11
相关论文
共 50 条
  • [1] Translativity of beta-type functions
    Malolepszy, Tomasz
    Matkowski, Janusz
    AEQUATIONES MATHEMATICAE, 2023, 97 (01) : 121 - 132
  • [2] Beta-type functions and the harmonic mean
    Martin Himmel
    Janusz Matkowski
    Aequationes mathematicae, 2017, 91 : 1041 - 1053
  • [3] Beta-type polynomials and their generating functions
    Simsek, Yilmaz
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 172 - 182
  • [4] Beta-type functions and the harmonic mean
    Himmel, Martin
    Matkowski, Janusz
    AEQUATIONES MATHEMATICAE, 2017, 91 (06) : 1041 - 1053
  • [5] Beta-type means
    Himmel, Martin
    Matkowski, Janusz
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (05) : 753 - 772
  • [6] Discrete Beta-Type Models
    Punzo, Antonio
    CLASSIFICATION AS A TOOL FOR RESEARCH, 2010, : 253 - 261
  • [7] BETA-TYPE INTERLAMELLAR SORPTION COMPLEXES
    ARAGON, F
    RUIZ, JC
    MACEWAN, DMC
    NATURE, 1959, 183 (4663) : 740 - 741
  • [8] AN ELEMENTARY EVALUATION OF A BETA-TYPE INTEGRAL
    ASKEY, R
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (07): : 892 - 895
  • [9] PREPARATION OF AN ALPHA,BETA-TYPE OF TERTHIOPHENES AND SEPTITHIOPHENES
    NAKAYAMA, J
    MURABAYASHI, S
    HOSHINO, M
    HETEROCYCLES, 1987, 26 (10) : 2599 - 2602
  • [10] Parametric study on beta-type Stirling engine
    Abuelyamen, A.
    Ben-Mansour, R.
    Abualhamayel, H.
    Mokheimer, Esmail M. A.
    ENERGY CONVERSION AND MANAGEMENT, 2017, 145 : 53 - 63