Asymptotic analysis of Emden-Fowler differential equations in the framework of regular variation

被引:0
|
作者
Kusano Takaši
Jelena V. Manojlović
机构
[1] Fukuoka University,Department of Applied Mathematics, Faculty of Science
[2] University of Niš,Faculty of Science and Mathematics, Department of Mathematics
来源
关键词
Emden-Fowler differential equations; Regularly varying solutions; Slowly varying solutions; Asymptotic behavior of solutions; Positive solutions; 34C11;
D O I
暂无
中图分类号
学科分类号
摘要
Sufficient conditions are established for the existence of slowly varying solution and regularly varying solution of index 1 of the second-order nonlinear differential equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\prime\prime}(t)+q(t)|x(t)|^{\gamma}\,{\rm sgn}\, x(t)=0, \quad \quad (A)$$\end{document}where γ is a positive constant different from 1 and q : [a, ∞) → (0, ∞) is a continuous integrable function. We show how an application of the theory of regular variation gives the possibility of determining the precise asymptotic behavior of solutions of both superlinear and sublinear equation (A).
引用
收藏
页码:619 / 644
页数:25
相关论文
共 50 条
  • [41] On asymptotic behavior of solutions of n-TH order Emden-Fowler differential equations with advanced argument
    R. Koplatadze
    Czechoslovak Mathematical Journal, 2010, 60 : 817 - 833
  • [42] ON ASYMPTOTIC BEHAVIOR OFSOLUTIONS OF n-TH ORDER EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH ADVANCED ARGUMENT
    Koplatadze, R.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) : 817 - 833
  • [43] On the oscillation of second-order Emden-Fowler neutral differential equations
    Li T.
    Han Z.
    Zhang C.
    Sun S.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 601 - 610
  • [44] On the Oscillation of Second Order Neutral Differential Equations of Emden-Fowler Type
    Zhiting Xu
    Monatshefte für Mathematik, 2007, 150 : 157 - 171
  • [45] Noncanonical Emden-Fowler neutral differential equations: New criteria for oscillation
    Abouelregal, A. E.
    Moaaz, O.
    Muhib, A.
    Abouhawwash, M.
    Khalil, K. M.
    Nasr, M. E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 1794 - 1806
  • [46] A priori estimates for solutions of ordinary differential equations of Emden-Fowler type
    Kon'kov, AA
    MATHEMATICAL NOTES, 2003, 73 (5-6) : 747 - 750
  • [47] On the oscillation of second order neutral differential equations of Emden-Fowler type
    Xu, Zhiting
    MONATSHEFTE FUR MATHEMATIK, 2007, 150 (02): : 157 - 171
  • [48] An efficient method for solving Emden-Fowler equations
    Shang, Xufeng
    Wu, Peng
    Shao, Xingping
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (09): : 889 - 897
  • [49] A nonoscillation theorem for sublinear Emden-Fowler equations
    Kwong, MK
    Wong, JSW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (07) : 1641 - 1646
  • [50] ON OSCILLATORY PROPERTIES OF ORDINARY DIFFERENTIAL EQUATIONS OF GENERALIZED EMDEN-FOWLER TYPE
    Koplatadze, R.
    Kvinikadze, G.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2005, 34 : 153 - 156