Quantum walking in curved spacetime

被引:0
|
作者
Pablo Arrighi
Stefano Facchini
Marcelo Forets
机构
[1] Aix-Marseille University,LIF
[2] University of Grenoble Alpes,LIG
来源
关键词
Paired QWs; Lattice quantum field theory; Quantum simulation;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document}) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.
引用
收藏
页码:3467 / 3486
页数:19
相关论文
共 50 条
  • [1] Quantum walking in curved spacetime
    Arrighi, Pablo
    Facchini, Stefano
    Forets, Marcelo
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (08) : 3467 - 3486
  • [2] Quantum walking in curved spacetime: discrete metric
    Arrighi, Pablo
    Di Molfetta, Giuseppe
    Facchini, Stefano
    [J]. QUANTUM, 2018, 2
  • [3] QUANTUM WALKING IN CURVED SPACETIME: (3+1) DIMENSIONS, AND BEYOND
    Arrighi, Pablo
    Facchini, Stefano
    [J]. QUANTUM INFORMATION & COMPUTATION, 2017, 17 (9-10) : 810 - 824
  • [4] Quantum fields in curved spacetime
    Hollands, Stefan
    Wald, Robert M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 574 : 1 - 35
  • [5] On quantum radiation in curved spacetime
    Xue, SS
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (05) : 857 - 872
  • [6] On quantum radiation in curved spacetime
    She-Sheng Xue
    [J]. General Relativity and Gravitation, 2005, 37 : 857 - 872
  • [7] Quantum field theory in curved spacetime
    Hollands, Stefan
    [J]. UNIVERSALITY AND RENORMALIZATION: FROM STOCHASTIC EVOLUTION TO RENORMALIZATION OF QUANTUM FIELDS, 2007, 50 : 131 - 149
  • [8] Gaussian quantum entanglement in curved spacetime
    Calamanciuc, Madalin
    Isar, Aurelian
    [J]. RESULTS IN PHYSICS, 2023, 55
  • [9] Quantum coherence of Gaussian states in curved spacetime
    Wu, Shu-Min
    Zeng, Hao-Sheng
    Liu, Tong-Hua
    [J]. RESULTS IN PHYSICS, 2019, 14
  • [10] Absolute quantum energy inequalities in curved spacetime
    Fewster, Christopher J.
    Smith, Calvin J.
    [J]. ANNALES HENRI POINCARE, 2008, 9 (03): : 425 - 455