Periodic orbits in a galactic potential

被引:1
|
作者
Harsoula, First M. [1 ]
Contopoulos, Second G. [1 ]
机构
[1] Acad Athens, Ctr Astron & Appl Math, Soranou Efessiou 4, Athens 11527, Greece
来源
关键词
Periodic orbits (stable and unstable); Galactic potential; QUANTUM-MECHANICS;
D O I
10.1007/s10569-024-10189-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We make a numerical study of the periodic orbits of period-1 and their bifurcations in a galactic type potential V = 1 2 [ alpha ( x 2 + y 2 ) + x 2 y 2 ] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\frac{1}{2}[\alpha (x<^>2+y<^>2)+x<^>2y<^>2]$$\end{document} , which tends to the Yang-Mills potential V = 1 2 x 2 y 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\frac{1}{2}x<^>2y<^>2$$\end{document} , when alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} tends to zero. We consider their stability diagrams, the corresponding Poincar & eacute; surfaces of section and the forms of the orbits.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] PERTURBATIONS OF GALACTIC ORBITS
    LYNDENBELL, D
    [J]. OBSERVATORY, 1981, 101 (1040): : 1 - 1
  • [42] Trapped and Escaping Orbits in an Axially Symmetric Galactic-Type Potential
    Zotos, Euaggelos E.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2012, 29 (02): : 161 - 173
  • [43] Galactic orbits of different galactic population objects
    Ossipkov, LP
    Kutuzov, SA
    [J]. UNSOLVED PROBLEMS OF THE MILKY WAY, 1996, (169): : 523 - 524
  • [44] Homoclinic orbits for an infinite dimensional Hamiltonian system with periodic potential
    Zhang J.
    Lv D.
    Tang Y.
    [J]. Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 133 - 146
  • [45] A semi-numerical method for periodic orbits in a bisymmetrical potential
    Caranicolas, N. D.
    Zotos, E. E.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2012, 40 : 41 - 45
  • [46] UNSTABLE PERIODIC-ORBITS IN THE FIELD OF A ROTATIONALLY SYMMETRIC POTENTIAL
    AGEKYAN, TA
    ORLOV, VV
    [J]. SOVIET ASTRONOMY LETTERS, 1989, 15 (04): : 329 - 331
  • [47] Galactic orbits of globular clusters
    Kutuzov, SA
    Ossipkov, LP
    [J]. DYNAMICS OF STAR CLUSTERS AND THE MILKY WAY, 2001, 228 : 500 - 502
  • [48] Chaotic Orbits in Galactic Satellites
    D. D. Carpintero
    J. C. Muzzio
    M. M. Vergne
    F. C. Wachlin
    [J]. Celestial Mechanics and Dynamical Astronomy, 2003, 85 : 247 - 267
  • [49] Galactic orbits of stars with planets
    Barbieri, M
    Gratton, RG
    [J]. ASTRONOMY & ASTROPHYSICS, 2002, 384 (03) : 879 - 883
  • [50] Chaotic orbits in galactic satellites
    Carpintero, DD
    Muzzio, JC
    Vergne, MM
    Wachlin, FC
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2003, 85 (03): : 247 - 267