A survey on artificial intelligence techniques for security event correlation: models, challenges, and opportunities

被引:0
|
作者
Diana Levshun
Igor Kotenko
机构
[1] St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS),
[2] ITMO University,undefined
来源
关键词
Event correlation; Security event; Data mining; Situational awareness; Knowledge representation; Cybersecurity;
D O I
暂无
中图分类号
学科分类号
摘要
Information systems need to process a large amount of event monitoring data. The process of finding the relationships between events is called correlation, which creates a context between independent events and previously collected information in real time and normalizes it for subsequent processing. In cybersecurity, events can determine the steps of attackers and can be analyzed as part of a specific attack strategy. In this survey, we present the systematization of security event correlation models in terms of their representation in AI-based monitoring systems as: rule-based, semantic, graphical and machine learning based-models. We define the main directions of current research in the field of AI-based security event correlation and the methods used for the correlation of both single events and their sequences in attack scenarios. We also describe the prospects for the development of hybrid correlation models. In conclusion, we identify the existing problems in the field and possible ways to overcome them.
引用
收藏
页码:8547 / 8590
页数:43
相关论文
共 50 条
  • [31] Artificial Intelligence in Dental Education: Opportunities and Challenges of Large Language Models and Multimodal Foundation Models
    Claman, Daniel
    Sezgin, Emre
    JMIR MEDICAL EDUCATION, 2024, 10
  • [32] Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities
    Kusters, Remy
    Misevic, Dusan
    Berry, Hugues
    Cully, Antoine
    Le Cunff, Yann
    Dandoy, Loic
    Diaz-Rodriguez, Natalia
    Ficher, Marion
    Grizou, Jonathan
    Othmani, Alice
    Palpanas, Themis
    Komorowski, Matthieu
    Loiseau, Patrick
    Frier, Clement Moulin
    Nanini, Santino
    Quercia, Daniele
    Sebag, Michele
    Fogelman, Francoise Soulie
    Taleb, Sofiane
    Tupikina, Liubov
    Sahu, Vaibhav
    Vie, Jill-Jenn
    Wehbi, Fatima
    FRONTIERS IN BIG DATA, 2020, 3
  • [33] Artificial Intelligence in Hematology: Current Challenges and Opportunities
    Radakovich, Nathan
    Nagy, Matthew
    Nazha, Aziz
    CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2020, 15 (03) : 203 - 210
  • [34] Artificial Intelligence in Nursing: New Opportunities and Challenges
    Ramirez-Baraldes, Estella
    Garcia-Gutierrez, Daniel
    Garcia-Salido, Cristina
    EUROPEAN JOURNAL OF EDUCATION, 2025, 60 (01)
  • [35] Challenges and opportunities for artificial intelligence in oncological imaging
    Cheung, H. M. C.
    Rubin, D.
    CLINICAL RADIOLOGY, 2021, 76 (10) : 728 - 736
  • [36] Artificial Intelligence in Hematology: Current Challenges and Opportunities
    Nathan Radakovich
    Matthew Nagy
    Aziz Nazha
    Current Hematologic Malignancy Reports, 2020, 15 : 203 - 210
  • [37] Artificial Intelligence: Opportunities and Challenges for Public Administration
    David, Genevieve
    CANADIAN PUBLIC ADMINISTRATION-ADMINISTRATION PUBLIQUE DU CANADA, 2024, 67 (03): : 388 - 406
  • [38] On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities
    Reyes, Mauricio
    Meier, Raphael
    Pereira, Sergio
    Silva, Carlos A.
    Dahlweid, Fried-Michael
    Von Tengg-Kobligk, Hendrik
    Summers, Ronald M.
    Wiest, Roland
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (03)
  • [39] The Ethics of Artificial Intelligence, Principles, Challenges and Opportunities
    Williams, Nerys
    OCCUPATIONAL MEDICINE-OXFORD, 2024, 74 (09): : 689 - 689
  • [40] The Ethics of Artificial Intelligence: Principles, Challenges, and Opportunities
    Ortega, Tatiana Lozano
    TOPICOS-REVISTA DE FILOSOFIA, 2025, (71):