Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure

被引:0
|
作者
Euaggelos E. Zotos
机构
[1] Aristotle University of Thessaloniki,Department of Physics, School of Science
来源
关键词
Restricted three body-problem; Equilibrium points; Basins of attraction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use the planar circular restricted three-body problem where one of the primary bodies is an oblate spheroid or an emitter of radiation in order to determine the basins of attraction associated with the equilibrium points. The evolution of the position of the five Lagrange points is monitored when the values of the mass ratio μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document}, the oblateness coefficient A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}$\end{document}, and the radiation pressure factor q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} vary in predefined intervals. The regions on the configuration (x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,y)$\end{document} plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson method. The correlations between the basins of convergence of the equilibrium points and the corresponding number of iterations needed in order to obtain the desired accuracy are also illustrated. We conduct a thorough and systematic numerical investigation demonstrating how the dynamical quantities μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document}, A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}$\end{document}, and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} influence the basins of attractions. Our results suggest that the mass ratio and the radiation pressure factor are the most influential parameters, while on the other hand the structure of the basins of convergence are much less affected by the oblateness coefficient.
引用
收藏
相关论文
共 50 条
  • [31] Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction
    C. N. Douskos
    [J]. Astrophysics and Space Science, 2010, 326 : 263 - 271
  • [32] Combined effects of perturbations, radiation, and oblateness on the stability of equilibrium points in the restricted three-body problem
    AbdulRazaq
    AbdulRaheem
    Singh, J
    [J]. ASTRONOMICAL JOURNAL, 2006, 131 (03): : 1880 - 1885
  • [33] Momentum Maps and Transport Mechanisms in the Planar Circular Restricted Three-Body Problem
    Eapen, Roshan T.
    Howell, Kathleen C.
    Alfriend, Kyle T.
    [J]. JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2022, 69 (05): : 1263 - 1291
  • [34] On the identification of multiple close encounters in the planar circular restricted three-body problem
    Guzzo, M.
    Lega, E.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (03) : 2688 - 2694
  • [35] Image classification of retrograde resonance in the planar circular restricted three-body problem
    Carita, G. A.
    Aljbaae, S.
    Morais, M. H. M.
    Signor, A. C.
    Carruba, V.
    Prado, A. F. B. A.
    Hussmann, H.
    [J]. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2024, 136 (02):
  • [36] Image classification of retrograde resonance in the planar circular restricted three-body problem
    G. A. Caritá
    S. Aljbaae
    M. H. M. Morais
    A. C. Signor
    V. Carruba
    A. F. B. A. Prado
    H. Hussmann
    [J]. Celestial Mechanics and Dynamical Astronomy, 2024, 136
  • [37] Investigating the planar circular restricted three-body problem with strong gravitational field
    Zotos, Euaggelos E.
    [J]. MECCANICA, 2017, 52 (09) : 1995 - 2021
  • [38] Investigating the planar circular restricted three-body problem with strong gravitational field
    Euaggelos E. Zotos
    [J]. Meccanica, 2017, 52 : 1995 - 2021
  • [39] Momentum Maps and Transport Mechanisms in the Planar Circular Restricted Three-Body Problem
    Roshan T. Eapen
    Kathleen C. Howell
    Kyle T. Alfriend
    [J]. The Journal of the Astronautical Sciences, 2022, 69 : 1263 - 1291
  • [40] Stability of the Triangular Points Under Combined Effects of Radiation and Oblateness in the Restricted Three-Body Problem
    Elbaz I. Abouelmagd
    [J]. Earth, Moon, and Planets, 2013, 110 : 143 - 155