Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure

被引:0
|
作者
Euaggelos E. Zotos
机构
[1] Aristotle University of Thessaloniki,Department of Physics, School of Science
来源
关键词
Restricted three body-problem; Equilibrium points; Basins of attraction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use the planar circular restricted three-body problem where one of the primary bodies is an oblate spheroid or an emitter of radiation in order to determine the basins of attraction associated with the equilibrium points. The evolution of the position of the five Lagrange points is monitored when the values of the mass ratio μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document}, the oblateness coefficient A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}$\end{document}, and the radiation pressure factor q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} vary in predefined intervals. The regions on the configuration (x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,y)$\end{document} plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson method. The correlations between the basins of convergence of the equilibrium points and the corresponding number of iterations needed in order to obtain the desired accuracy are also illustrated. We conduct a thorough and systematic numerical investigation demonstrating how the dynamical quantities μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu $\end{document}, A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}$\end{document}, and q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q$\end{document} influence the basins of attractions. Our results suggest that the mass ratio and the radiation pressure factor are the most influential parameters, while on the other hand the structure of the basins of convergence are much less affected by the oblateness coefficient.
引用
收藏
相关论文
共 50 条
  • [1] Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure
    Zotos, Euaggelos E.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (06)
  • [2] Regularization of circular restricted three-body problem accounting radiation pressure and oblateness
    Vineet K. Srivastava
    Jai Kumar
    Badam Singh Kushvah
    [J]. Astrophysics and Space Science, 2017, 362
  • [3] Regularization of circular restricted three-body problem accounting radiation pressure and oblateness
    Srivastava, Vineet K.
    Kumar, Jai
    Kushvah, Badam Singh
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2017, 362 (03)
  • [4] Halo orbit of regularized circular restricted three-body problem with radiation pressure and oblateness
    Vineet K. Srivastava
    Jai Kumar
    Padmdeo Mishra
    Badam Singh Kushvah
    [J]. Journal of Astrophysics and Astronomy, 2018, 39
  • [5] Halo orbit of regularized circular restricted three-body problem with radiation pressure and oblateness
    Srivastava, Vineet K.
    Kumar, Jai
    Mishra, Padmdeo
    Kushvah, Badam Singh
    [J]. JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2018, 39 (05)
  • [6] Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation
    Euaggelos E. Zotos
    [J]. Astrophysics and Space Science, 2017, 362
  • [7] Comparing the fractal basins of attraction in the Hill problem with oblateness and radiation
    Zotos, Euaggelos E.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2017, 362 (10)
  • [8] On a planar circular restricted charged three-body problem
    Bengochea, Abimael
    Vidal, Claudio
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 358 (01)
  • [9] FLYBYS IN THE PLANAR, CIRCULAR, RESTRICTED, THREE-BODY PROBLEM
    Campagnola, Stefano
    Skerritt, Paul
    Russell, Ryan P.
    [J]. ASTRODYNAMICS 2011, PTS I - IV, 2012, 142 : 373 - 392
  • [10] On a planar circular restricted charged three-body problem
    Abimael Bengochea
    Claudio Vidal
    [J]. Astrophysics and Space Science, 2015, 358