Existence of ground state solutions for a class of Choquard equations with local nonlinear perturbation and variable potential

被引:0
|
作者
Jing Zhang
Qiongfen Zhang
机构
[1] Guilin University of Technology,College of Science
[2] Guangxi Colleges and Universities Key Laboratory of Applied Statistics,undefined
来源
关键词
Ground state solution; Variable potential; Choquard equation; Critical point; 34C37; 35A15; 37J45; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we focus on the existence of solutions for the Choquard equation {−Δu+V(x)u=(Iα∗|u|αN+1)|u|αN−1u+λ|u|p−2u,x∈RN;u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ \end{document} where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >0$\end{document} is a parameter, α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (0,N)$\end{document}, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\ge 3$\end{document}, Iα:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$\end{document} is the Riesz potential. As usual, α/N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha /N+1$\end{document} is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if λ>λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda >\lambda _{*}$\end{document} for some given number λ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{*}$\end{document} in three cases: (i) 2<p<4N+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< p<\frac{4}{N}+2$\end{document}, (ii) p=4N+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=\frac{4}{N}+2$\end{document}, and (iii) 4N+2<p<2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4}{N}+2< p<2^{*}$\end{document}. Our result improves the previous related ones in the literature.
引用
收藏
相关论文
共 50 条
  • [41] Existence of Positive Ground State Solutions for Choquard Systems
    Deng, Yinbin
    Jin, Qingfei
    Shuai, Wei
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 819 - 831
  • [42] Ground state solutions for nonlinear Choquard equations with inverse-square potentials
    Guo Ting
    Tang Xianhua
    ASYMPTOTIC ANALYSIS, 2020, 117 (3-4) : 141 - 160
  • [43] Existence of ground state solutions for quasilinear Schrodinger equations with general Choquard type nonlinearity
    He, Yu-bo
    Zhou, Jue-liang
    Lin, Xiao-yan
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [44] Positive solutions to a class of Choquard type equations with a competing perturbation
    Yao, Shuai
    Sun, Juntao
    Wu, Tsung-fang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (01)
  • [45] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Gongbao Li
    Xiao Luo
    Science China Mathematics, 2020, 63 (03) : 539 - 558
  • [46] Ground state solutions for nonlinear Choquard equation with singular potential and critical exponents
    Liu, Senli
    Chen, Haibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [47] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Li, Gongbao
    Luo, Xiao
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (03) : 539 - 558
  • [48] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Gongbao Li
    Xiao Luo
    Science China Mathematics, 2020, 63 : 539 - 558
  • [49] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Luo, Huxiao
    Wang, Lushun
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1269 - 1294
  • [50] Normalized Ground State Solutions for Nonautonomous Choquard Equations
    Huxiao Luo
    Lushun Wang
    Frontiers of Mathematics, 2023, 18 : 1269 - 1294