Equilibrium of an Inverted Mathematical Double-Link Pendulum with a Follower Force

被引:0
|
作者
L. G. Lobas
L. D. Patricio
I. G. Boruk
机构
[1] University of Economics and Transport Technology,
[2] Beira Interior University,undefined
来源
关键词
Equilibrium State; Vertical Position; Stable Equilibrium; Discrete Model; Follower Force;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete model of an elastic pendulum with a follower force is studied. This model is an inverted mathematical two-link pendulum with viscoelastic hinges. It is shown that divergent bifurcations are possible for some absolute values of the follower force and the stiffness of the restraint of the pendulum's upper end. As a result, the vertical position of the equilibrium becomes unstable and two new nonvertical stable equilibrium states (fork bifurcation) occur.
引用
收藏
页码:372 / 376
页数:4
相关论文
共 50 条
  • [41] Influence of the Nonlinearity of the Elastic Elements on the Stability of a Double Pendulum with Follower Force in the Critical Case
    L. G. Lobas
    V. V. Koval’chuk
    International Applied Mechanics, 2005, 41 : 455 - 461
  • [42] Evolution of Limit Cycles in the Stability Domain of a Double Pendulum under a Variable Follower Force
    I. G. Boruk
    V. L. Lobas
    International Applied Mechanics, 2004, 40 : 337 - 344
  • [43] Evolution of limit cycles in the stability domain of a double pendulum under a variable follower force
    Boruk, IG
    Lobas, VL
    INTERNATIONAL APPLIED MECHANICS, 2004, 40 (03) : 337 - 344
  • [44] Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum
    P. O. Bulanchuk
    A. G. Petrov
    Mechanics of Solids, 2013, 48 : 380 - 387
  • [45] Suspension point vibration parameters for a given equilibrium of a double mathematical pendulum
    Bulanchuk, P. O.
    Petrov, A. G.
    MECHANICS OF SOLIDS, 2013, 48 (04) : 380 - 387
  • [46] On double-link failure recovery in WDM optical networks
    Choi, H
    Subramaniam, S
    Choi, HA
    IEEE INFOCOM 2002: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2002, : 808 - 816
  • [47] N-link Inverted Pendulum Modeling
    Gmiterko, A.
    Grossman, M.
    RECENT ADVANCES IN MECHATRONICS: 2008-2009, 2009, : 151 - +
  • [48] COMPUTER CONTROL OF A DOUBLE INVERTED PENDULUM
    FURUTA, K
    OKUTANI, T
    SONE, H
    COMPUTERS & ELECTRICAL ENGINEERING, 1978, 5 (01) : 67 - 84
  • [49] OPTIMAL DESIGN OF THE DOUBLE INVERTED PENDULUM
    Lukowska, A.
    Tomaszuk, P.
    Dzierzek, K.
    Kamienski, K.
    Rolkowski, P.
    Ostaszewski, Michal
    ENGINEERING MECHANICS 2019, 2019, 25 : 235 - 238
  • [50] Mathematical Modelling and Controller Design of Inverted Pendulum
    Strakos, Premysl
    Tuma, Jiri
    2017 18TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2017, : 388 - 393