New Quantum Structure of Space-Time

被引:0
|
作者
Norma G. Sanchez
机构
[1] Sorbonne Universite UPMC Paris VI,LERMA CNRS UMR 8112 Observatoire de Paris PSL, Research University
来源
Gravitation and Cosmology | 2019年 / 25卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Starting from quantum theory (instead of general relativity) to approach quantum gravity within a minimal setting allows us here to describe the quantum space-time structure and the quantum light cone. From the classical-quantum duality and quantum harmonic oscillator (X, P) variables in global phase space, we promote the space-time coordinates to quantum noncommuting operators. The phase space instanton (X, P = iT) describes the hyperbolic quantum space-time structure and generates the quantum light cone. The classical Minkowski space-time null generators X = ±T disappear at the quantum level due to the relevant quantum [X, T] commutator which is always nonzero. A new quantum Planck scale vacuum region emerges. We describe the quantum Rindler and quantum Schwarzschild-Kruskal space-time structures. The horizons and the r = 0 space-time singularity are quantum mechanically erased. The four Kruskal regions merge inside a single quantum Planck scale “world.” The quantum space-time structure consists of hyper bolic discrete levels of odd numbers (X2 — T2)n = (2n + 1) (in Planck units ), n = 0,1, 2....(Xn, Tn) and the mass levels being v(2n + 1). A coherent picture emerges: large n levels are semiclassical tending towards a classical continuum space-time. Low n are quantum, the lowest mode (n = 0) being the Planck scale. Two dual (±) branches are present in the local variables (v2n + 1 ± v2n) reflecting the duality of the large and small n behaviors and covering the whole mass spectrum from the largest astrophysical objects in branch (+) to quantum elementary particles in branch (—) passing by the Planck mass. Black holes belong to both branches (+) and (—).
引用
收藏
页码:91 / 102
页数:11
相关论文
共 50 条
  • [21] GRAVITY IN QUANTUM SPACE-TIME
    Amelino-Camelia, Giovanni
    Loret, Niccolo
    Mandanici, Gianluca
    Mercati, Flavio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (14): : 2385 - 2392
  • [22] QUANTUM SPACE-TIME - A REVIEW
    NAMSRAI, K
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1988, 36 (07): : 479 - 519
  • [23] Quantum information and space-time
    Hosoya, Akio
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (164): : 169 - 175
  • [24] The quantum source of space-time
    Cowen R.
    Nature, 2015, 527 (7578) : 290 - 293
  • [25] Space-Time in Quantum Theory
    Capellmann, H.
    FOUNDATIONS OF PHYSICS, 2021, 51 (02)
  • [26] QUANTUM MODEL FOR SPACE-TIME
    CHAPLINE, G
    MODERN PHYSICS LETTERS A, 1992, 7 (22) : 1959 - 1965
  • [27] Space-Time Quantum Metasurfaces
    Kort-Kamp, Wilton J. M.
    Azad, Abul K.
    Dalvit, Diego A. R.
    PHYSICAL REVIEW LETTERS, 2021, 127 (04)
  • [28] Theory of quantum space-time
    Brody, DC
    Hughston, LP
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061): : 2679 - 2699
  • [29] Quantum Space-Time and Tetrads
    Holger Lyre
    International Journal of Theoretical Physics, 1998, 37 : 393 - 400
  • [30] THE QUANTUM DIMENSION OF SPACE-TIME
    ALVAREZ, E
    CESPEDES, J
    VERDAGUER, E
    CHAOS SOLITONS & FRACTALS, 1994, 4 (03) : 411 - 414