Changing of mechanical property and bearing capacity of strongly chlorine saline soil under freeze-thaw cycles

被引:0
|
作者
Shijun Ding
Shaomin Li
Sen Kong
Qiuyang Li
Taohui Yang
Zhibao Nie
Gaowen Zhao
机构
[1] Chang’an University,School of Highway
[2] Ministry of Education,Key Laboratory for Special Area Highway Engineering
[3] Chang’an University,undefined
[4] China Electric Power Research Institute,undefined
[5] State Grid Qinghai Electric Power Company,undefined
来源
关键词
Strongly chlorine saline soil; Freeze-thaw cycles; Mechanical property; Subsoil-bearing capacity; Mechanisms;
D O I
暂无
中图分类号
学科分类号
摘要
Freeze-thaw cycles and compactness are two critical factors that significantly affect the engineering properties and safety of building foundations, especially in seasonally frozen regions. This paper investigated the effects of freeze-thaw cycles on the shear strength of naturally strongly chlorine saline soil with the compactness of 85%, 90% and 95%. Three soil samples with different compactness were made. Size and mass changes were measured and recorded during freeze-thaw cycles. Shear strength under different vertical pressures was determined by direct shear tests, and the cohesion and friction angle were measured and discussed. Microstructure characteristic changes of saline soil samples were observed using scanning electron microscopy under different freeze-thaw cycles. Furthermore, numerical software was used to calculate the subsoil-bearing capacity and settlement of the electric tower foundation in the Qarhan Salt Lake region under different freeze-thaw cycles. Results show that the low-density soil shows thaw settlement deformation, but the high-density soil shows frost-heaving deformation with the increase in freeze-thaw cycles. The shear strength of the soil samples first increases and then decreases with the increase in freeze-thaw cycles. After 30 freeze-thaw cycles, the friction angle of soil samples is 28.3%, 29.2% and 29.6% lower than the soil samples without freeze-thaw cycle, the cohesion of soil samples is 71.4%, 60.1% and 54.4% lower than the samples without freeze-thaw cycle, and the cohesion and friction angle of soil samples with different compactness are close to each other. Microstructural changes indicate that the freeze-thaw cycle leads to the breakage of coarse particles and the aggregation of fine particles. Correspondingly, the structure type of soil changes from a granular stacked structure to a cemented-aggregated system. Besides, the quality loss of soil samples is at about 2% during the freeze-thaw cycles. Results suggest that there may be an optimal compactness between 90 and 95%, on the premise of meeting the design requirements and economic benefits. This study can provide theoretical guidance for foundation engineering constructions in seasonally frozen regions.
引用
收藏
相关论文
共 50 条
  • [41] The Evolution of the Dynamic Modulus of Fly Ash Soil under the Freeze-thaw Cycles
    Chen Jia-feng
    Li Li
    Wei Hai-bin
    Chang Ming-ming
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 748 - 751
  • [42] The Effect of Freeze-Thaw Cycles on Mechanical Properties of Concrete
    Song, Wali
    Li, Xuefang
    Ma, Kefei
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 3429 - 3432
  • [43] Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles
    Orakoglu, Muge Elif
    Liu, Jiankun
    Niu, Fujun
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2017, 101 : 269 - 284
  • [44] Micro-composition evolution of the undisturbed saline soil undergoing different freeze-thaw cycles
    Han, Mengxia
    Peng, Wei
    Ma, Bing
    Yu, Qingbo
    Kasama, Kiyonobu
    Furukawa, Zentaro
    Niu, Cencen
    Wang, Qing
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 210
  • [45] Experimental and DEM simulations of the mechanical properties of rock under freeze-thaw cycles
    Yu, Jun
    Zhang, Qiang
    Jia, Chaojun
    Lei, Mingfeng
    Zhao, Chenyang
    Pang, Ruifeng
    Li, Zong
    Zeng, Tao
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 211
  • [46] Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles
    Chi Zhang
    Xiao-guang Jin
    Chao Hou
    Jie He
    Journal of Mountain Science, 2023, 20 : 227 - 241
  • [47] Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles
    ZHANG Chi
    JIN Xiao-guang
    HOU Chao
    HE Jie
    Journal of Mountain Science, 2023, 20 (01) : 227 - 241
  • [48] Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles
    Tan, Xianjun
    Chen, Weizhong
    Yang, Jianping
    Cao, Junjie
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2011, 68 (03) : 130 - 138
  • [49] Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles
    Shen, Jiejie
    Wang, Qing
    Chen, Yating
    Han, Yan
    Zhang, Xudong
    Liu, Yaowu
    ENGINEERING GEOLOGY, 2022, 304
  • [50] Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles
    Zhang, Chi
    Jin, Xiao-guang
    Hou, Chao
    He, Jie
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (01) : 227 - 241