Large extra dimension effects through light-by-light scattering at the CERN LHC

被引:0
|
作者
Hao Sun
机构
[1] Dalian University of Technology,Institute of Theoretical Physics, School of Physics and Optoelectronic Technology
来源
关键词
Large Hadron Collider; Large Extra Dimension; Central Exclusive Production; Forward Detector; Large Extra Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Observing light-by-light scattering at the large hadron collider (LHC) has received quite some attention and it is believed to be a clean and sensitive channel to possible new physics. In this paper, we study the diphoton production at the LHC via the process pp→pγγp→pγγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{pp}}\rightarrow {{p}}\gamma \gamma {{p}}\rightarrow {{p}}\gamma \gamma {{p}}$$\end{document} through graviton exchange in the large extra dimension (LED) model. Typically, when we do the background analysis, we also study the double Pomeron exchange of γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} production. We compare its production in the quark–quark collision mode to the gluon–gluon collision mode and find that contributions from the gluon–gluon collision mode are comparable to the quark–quark one. Our result shows, for extra dimension δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =4$$\end{document}, with an integrated luminosity L=200fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L} = 200\,\mathrm{fb}^{-1}$$\end{document} at the 14 TeV LHC, that diphoton production through graviton exchange can probe the LED effects up to the scale MS=5.06(4.51,5.11)TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{S}=5.06 (4.51, 5.11)\,\mathrm{TeV}$$\end{document} for the forward detector acceptance ξ1(ξ2,ξ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _1 (\xi _2, \xi _3)$$\end{document}, respectively, where 0.0015<ξ1<0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0015<\xi _1<0.5$$\end{document}, 0.1<ξ2<0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1<\xi _2<0.5$$\end{document}, and 0.0015<ξ3<0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0015<\xi _3<0.15$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] An optimized basis for hadronic light-by-light scattering
    Hoferichter, Martin
    Stoffer, Peter
    Zillinger, Maximilian
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (04)
  • [22] DETECTION OF ELASTIC LIGHT-BY-LIGHT SCATTERING AT SLAC
    MIKAELIAN, KO
    PHYSICS LETTERS B, 1982, 115 (03) : 267 - 269
  • [23] Positron production in multiphoton light-by-light scattering
    Burke, DL
    Field, RC
    HortonSmith, G
    Spencer, JE
    Walz, D
    Berridge, SC
    Bugg, WM
    Shmakov, K
    Weidemann, AW
    Bula, C
    McDonald, KT
    Prebys, EJ
    Bamber, C
    Boege, SJ
    Koffas, T
    Kotseroglou, T
    Melissinos, AC
    Meyerhofer, DD
    Reis, DA
    Raggk, W
    PHYSICAL REVIEW LETTERS, 1997, 79 (09) : 1626 - 1629
  • [24] Hadronic light-by-light scattering and the pion polarizability
    Engel, Kevin T.
    Patel, Hiren H.
    Ramsey-Musolf, Michael J.
    PHYSICAL REVIEW D, 2012, 86 (03):
  • [25] Dispersive approach to hadronic light-by-light scattering
    Colangelo, G.
    Hoferichter, M.
    Procura, M.
    Stoffer, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [26] Positron production in multiphoton light-by-light scattering
    Stanford Univ, Stanford, United States
    Phys Rev Lett, 9 (1626-1629):
  • [27] The role of meson exchanges in light-by-light scattering
    Lebiedowicz, Piotr
    Szczurek, Antoni
    PHYSICS LETTERS B, 2017, 772 : 330 - 335
  • [28] Dispersive approach to hadronic light-by-light scattering
    G. Colangelo
    M. Hoferichter
    M. Procura
    P. Stoffer
    Journal of High Energy Physics, 2014
  • [29] Dispersion relation for hadronic light-by-light scattering
    Procura, Massimiliano
    Colangelo, Gilberto
    Hoferichter, Martin
    Stoffer, Peter
    INTERNATIONAL WORKSHOP ON FLAVOUR CHANGING AND CONSERVING PROCESSES 2015 (FCCP 2015), 2016, 118
  • [30] Light-by-light scattering in the presence of magnetic fields
    Baier, R.
    Rebhan, A.
    Woedlinger, M.
    PHYSICAL REVIEW D, 2018, 98 (05)