The bound-state solutions of the one-dimensional pseudoharmonic oscillator

被引:0
|
作者
Rufus Boyack
Asadullah Bhuiyan
Aneca Su
Frank Marsiglio
机构
[1] Université de Montréal,Département de physique
[2] University of Alberta,Department of Physics
来源
关键词
Pseudoharmonic oscillator; Bound states; Hypergeometric functions; Matrix mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
We study the bound states of a quantum mechanical system consisting of a simple harmonic oscillator with an inverse-square potential, whose strength is governed by a constant α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The singular form of this potential has doubly-degenerate bound states for -1/4≤α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/4\le \alpha <0$$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}; since the potential is symmetric, these consist of even and odd-parity states. In addition we consider a regularized form of this potential with a constant cutoff near the origin. For this regularized potential, there are also even and odd-parity eigenfunctions for α≥-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge -1/4$$\end{document}. For attractive potentials within the range -1/4≤α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/4\le \alpha <0$$\end{document}, there is an even-parity ground state with increasingly negative energy and a probability density that approaches a Dirac delta function as the cutoff parameter becomes zero. These properties are analogous to a similar ground state present in the regularized one-dimensional hydrogen atom. We solve this problem both analytically and numerically, and show how the regularized excited states approach their unregularized counterparts.
引用
收藏
页码:242 / 276
页数:34
相关论文
共 50 条
  • [21] BOUND-STATE REPRESENTATION OF SCATTERING SOLUTIONS
    BASSICHIS, WH
    READING, JF
    SCHEERBAUM, RR
    PHYSICAL REVIEW C, 1975, 11 (02): : 316 - 322
  • [22] BOUND-STATE SOLUTIONS OF SCHRODINGER EQUATION
    BLACK, RD
    POTH, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (06): : 798 - 798
  • [23] DRIVEN SYSTEMS WITH ONE BOUND-STATE
    ENGLERT, BG
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) : 239 - 248
  • [24] DIMENSIONAL CONTINUATION FOR BOUND-STATE PROBLEMS
    DELBOURGO, R
    PRASAD, VB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (01): : 105 - 108
  • [25] Exact solutions to D-dimensional Schrodinger equation with a pseudoharmonic oscillator
    Wang, LY
    Gu, XY
    Ma, ZQ
    Dong, SH
    FOUNDATIONS OF PHYSICS LETTERS, 2002, 15 (06) : 569 - 576
  • [26] EXACT SOLUTION OF THE BOUND-STATE FADDEEV-YAKUBOVSKY EQUATIONS FOR ONE-DIMENSIONAL SYSTEMS WITH A DELTA-FUNCTION INTERACTION
    ZUBAREV, AL
    MANDELZWEIG, VB
    PHYSICAL REVIEW C, 1995, 52 (02): : 509 - 512
  • [27] One-dimensional oscillator in a box
    Amore, Paolo
    Fernandez, Francisco M.
    EUROPEAN JOURNAL OF PHYSICS, 2010, 31 (01) : 69 - 77
  • [28] BOUND-STATE EQUATION OF MESONS AND ITS SOLUTIONS
    HSIEN, TC
    WU, CW
    JI, S
    KAO, L
    SCIENTIA SINICA, 1978, 21 (01): : 44 - 61
  • [29] The fluctuation of one-dimensional Minkowski oscillator in thermal number state
    Yu, D
    Gui, YX
    Guo, GH
    Ye, X
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (06): : 677 - 685
  • [30] BOUND-STATE OF SCHRODINGER OPERATORS IN ONE DIMENSION
    KLAUS, M
    ANNALS OF PHYSICS, 1977, 108 (02) : 288 - 300