The bound-state solutions of the one-dimensional pseudoharmonic oscillator

被引:0
|
作者
Rufus Boyack
Asadullah Bhuiyan
Aneca Su
Frank Marsiglio
机构
[1] Université de Montréal,Département de physique
[2] University of Alberta,Department of Physics
来源
关键词
Pseudoharmonic oscillator; Bound states; Hypergeometric functions; Matrix mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
We study the bound states of a quantum mechanical system consisting of a simple harmonic oscillator with an inverse-square potential, whose strength is governed by a constant α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The singular form of this potential has doubly-degenerate bound states for -1/4≤α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/4\le \alpha <0$$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}; since the potential is symmetric, these consist of even and odd-parity states. In addition we consider a regularized form of this potential with a constant cutoff near the origin. For this regularized potential, there are also even and odd-parity eigenfunctions for α≥-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge -1/4$$\end{document}. For attractive potentials within the range -1/4≤α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/4\le \alpha <0$$\end{document}, there is an even-parity ground state with increasingly negative energy and a probability density that approaches a Dirac delta function as the cutoff parameter becomes zero. These properties are analogous to a similar ground state present in the regularized one-dimensional hydrogen atom. We solve this problem both analytically and numerically, and show how the regularized excited states approach their unregularized counterparts.
引用
收藏
页码:242 / 276
页数:34
相关论文
共 50 条