Spectral bounds for the vulnerability parameters of graphs

被引:0
|
作者
Hongzhang Chen
Jianxi Li
Wai Chee Shiu
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Center for Applied Mathematics
[2] Minnan Normal University,School of Mathematics and Statistics
[3] The Chinese University of Hong Kong,Department of Mathematics
来源
关键词
Scattering number; Integrity; Tenacity; Signless Laplacian spectral radius; (Normalized) Laplacian eigenvalues; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The scattering number, integrity, and tenacity are preferred for evaluating the vulnerability and reliability of a communication network. In this paper, we establish a tight signless Laplacian spectral radius condition to guarantee the scattering number of a connected graph G with the minimum degree δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be at most zero. As well as new tight bounds for the integrity and tenacity of graphs in terms of their (normalized) Laplacian eigenvalues are also included. Our results extend the corresponding results on regular graphs due to Li et al. (Future Gener Comput Syst 83:450–453, 2018), respectively.
引用
收藏
相关论文
共 50 条
  • [21] Bounds related to Coxeter spectral measures of graphs
    Antonio de la Pena, Jose
    Arturo Jimenez-Gonzalez, Jesus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 : 32 - 54
  • [22] Bounds on the second stage spectral radius of graphs
    Department of Mathematics, Thanjavur, India
    Int. J. Comput. Math. Sci., 8 (418-421): : 418 - 421
  • [23] Sharp bounds on distance spectral radius of graphs
    Lin, Huiqiu
    Shu, Jinlong
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (04): : 442 - 447
  • [24] Sharp upper bounds on the spectral radius of graphs
    Shu, JL
    Wu, YR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 : 241 - 248
  • [25] Lower bounds for the Laplacian spectral radius of graphs
    Afshari, B.
    Saadati, M. T.
    Saadati, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 631 : 136 - 142
  • [26] Bounds for the (Laplacian) spectral radius of graphs with parameter α
    Tian, Gui-Xian
    Huang, Ting-Zhu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 567 - 580
  • [27] On Spectral Bounds for the k-Partitioning of Graphs
    Robert Elsässer
    Thomas Lücking
    Burkhard Monien
    Theory of Computing Systems, 2003, 36 : 461 - 478
  • [28] Bounds on Domination Parameters in Graphs: A Brief Survey
    HENNING, M. I. C. H. A. E. L. A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 665 - 708
  • [29] Bounds for eccentricity-based parameters of graphs
    Tang, Yunfang
    Qi, Xuli
    West, Douglas B.
    Discrete Applied Mathematics, 2025, 362 : 109 - 123
  • [30] A CLASSIFICATION SCHEME FOR VULNERABILITY AND RELIABILITY PARAMETERS OF GRAPHS
    BAGGA, KS
    BEINEKE, LW
    PIPPERT, RE
    LIPMAN, MJ
    MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) : 13 - 16