Microstructures and dielectric tunable properties of Ba0.5Sr0.5TiO3–Li2MgTiO4 and Ba0.5Sr0.5TiO3–Li2Mg3TiO6 composite ceramics

被引:0
|
作者
Zexing Fu
Zhibo Xu
Chong Liu
Nannan Song
Yebin Xu
机构
[1] Huazhong University of Science and Technology,School of Optical and Electronic Information
关键词
D O I
暂无
中图分类号
学科分类号
摘要
(1−x)Ba0.5Sr0.5TiO3–xLi2MgTiO4 and (1−x)Ba0.5Sr0.5TiO3–xLi2Mg3TiO6 composite ceramics were prepared via the conventional solid-state reaction method. Microstructures and dielectric tunable properties of Ba0.5Sr0.5TiO3–Li2MgTiO4 and Ba0.5Sr0.5TiO3–Li2Mg3TiO6 composite ceramics were investigated. In this composite system, the cubic perovskite BST phase can coexist well with the rock-salt Li2MgTiO4 phase and Li2Mg3TiO6 phase. Only at 1300 °C sintering temperature, due to the decomposition of Li2MgTiO4, a trace of Mg2TiO4 impurity is produced when dielectric content is higher than 55wt% in Ba0.5Sr0.5TiO3–Li2MgTiO4 composite ceramics. At the test frequency of 10 kHz, with the increase of Li2MgTiO4 content from 10wt% to 60wt%, the dielectric constant of Ba0.5Sr0.5TiO3–Li2MgTiO4 composite ceramics sintered at 1300 °C decreases from 962 to 90, the dielectric loss remains below 0.009, and the tunability under an electric field strength of 3 kV/mm gradually decreases from 12.1 to 4.2%. With the gradual increase of Li2Mg3TiO6 content from 10 wt% to 60 wt%, the dielectric constant of Ba0.5Sr0.5TiO3–Li2Mg3TiO6 composite ceramics sintered at 1280 °C decreases from 1042 to 79, the dielectric loss remains below 0.003, and the tunability at 3 kV/mm decreases from 17.2 to 4.9%.
引用
收藏
相关论文
共 50 条
  • [31] Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3-Mg2TiO4 microwave composite ceramics
    Chou, Xiujian
    Zhai, Jiwei
    Yao, Xi
    APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [32] Effects of the crystalline properties on the dielectric performances in Ba0.5Sr0.5TiO3 thin films
    Hong, S. H.
    Hwang, I. R.
    Choi, J. S.
    Lee, J. H.
    Kim, S. H.
    Jeon, S. H.
    Kang, Sung Oong
    Alishev, Vadim Sh.
    Park, B. H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (02) : 421 - 426
  • [33] The effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films
    Horwitz, JS
    Chang, WT
    Kim, W
    Qadri, SB
    Pond, JM
    Kirchoefer, SW
    Chrisey, DB
    JOURNAL OF ELECTROCERAMICS, 2000, 4 (2-3) : 357 - 363
  • [34] Dielectric properties of planar structures based on ferroelectric Ba0.5Sr0.5TiO3 films
    B. M. Gol’tsman
    V. V. Lemanov
    A. I. Dedyk
    S. F. Karmanenko
    L. T. Ter-Martirosyan
    Technical Physics Letters, 1997, 23 : 594 - 596
  • [35] AC loss modeling in Ba0.5Sr0.5TiO3 using dielectric relaxation
    Pervez, NK
    Lu, JW
    Stemmer, S
    York, RA
    MATERIALS, INTEGRATION AND PACKAGING ISSUES FOR HIGH-FREQUENCY DEVICES II, 2005, 833 : 41 - 46
  • [36] Effects of Ir electrodes on the dielectric constants of Ba0.5Sr0.5TiO3 films
    Cha, SY
    Jang, BT
    Lee, HC
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (1AB): : L49 - L51
  • [37] Influence of doped CaTiO3 on microstructure and dielectric properties of Ba0.5Sr0.5TiO3 bulk ceramics
    Xu, CL
    Xue, H
    Zhou, HP
    Hu, L
    RARE METAL MATERIALS AND ENGINEERING, 2003, 32 : 452 - 455
  • [38] Effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films
    Horwitz, James S.
    Chang, Wontae
    Kim, Wonjeong
    Qadri, Syed B.
    Pond, Jeffrey M.
    Kirchoefer, Steven W.
    Chrisey, Douglas B.
    Journal of Electroceramics, 2000, 4 (02) : 357 - 363
  • [39] Superlattice periodicity and magnetic properties of Ba2FeMoO6/Ba0.5Sr0.5TiO3 system
    Kim, Kyeong-Won
    Ghosh, Siddhartha
    Buvaev, Sanal
    Hebard, Arthur F.
    Norton, David P.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (21)
  • [40] Dielectric relaxor behavior of ZnWO4 content on Ba0.5Sr0.5TiO3 composite ceramics for tunable microwave applications
    Zhang, Mingwei
    Zhai, Jiwei
    Jiang, Haitao
    Zhang, Jingji
    Yao, Xi
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 172 (03): : 311 - 316