On Bifurcations of Symmetric Elliptic Orbits

被引:0
|
作者
Marina S. Gonchenko
机构
[1] Departament de Matemàtiques i Informàtica,
[2] Universitat de Barcelona,undefined
来源
关键词
bifurcation; central symmetry; elliptic orbits; :; resonance;
D O I
暂无
中图分类号
学科分类号
摘要
We study bifurcations of symmetric elliptic fixed points in the case of p:q resonances with odd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\geqslant 3$$\end{document}. We consider the case where the initial area-preserving map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{z}=\lambda z+Q(z,z^{*})$$\end{document} possesses the central symmetry, i. e., is invariant under the change of variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\to-z$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^{*}\to-z^{*}$$\end{document}. We construct normal forms for such maps in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda=e^{i2\pi\frac{p}{q}}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} are mutually prime integer numbers, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\leqslant q$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is odd, and study local bifurcations of the fixed point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z=0$$\end{document} in various settings. We prove the appearance of garlands consisting of four \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative (contain symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).
引用
收藏
页码:25 / 39
页数:14
相关论文
共 50 条
  • [1] On Bifurcations of Symmetric Elliptic Orbits
    Gonchenko, Marina S.
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 25 - 39
  • [2] Bifurcations of symmetric periodic orbits via Floer homology
    Joontae Kim
    Seongchan Kim
    Myeonggi Kwon
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [3] Bifurcations of symmetric periodic orbits via Floer homology
    Kim, Joontae
    Kim, Seongchan
    Kwon, Myeonggi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
  • [4] Bifurcations from degenerate orbits of solutions of nonlinear elliptic systems
    Anna Gołȩbiewska
    Joanna Kluczenko
    Piotr Stefaniak
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [5] Bifurcations from degenerate orbits of solutions of nonlinear elliptic systems
    Golebiewska, Anna
    Kluczenko, Joanna
    Stefaniak, Piotr
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [6] Bifurcations of symmetric periodic orbits near equilibrium in reversible systems
    Shih, CW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03): : 569 - 584
  • [7] On the Stability of Symmetric Periodic Orbits of the Elliptic Sitnikov Problem
    Cen, Xiuli
    Cheng, Xuhua
    Huang, Zaitang
    Zhang, Meirong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 1271 - 1290
  • [8] Isotropy subalgebras of elliptic orbits in semisimple Lie algebras, and the canonical representatives of pseudo-Hermitian symmetric elliptic orbits
    Boumuki, Nobutaka
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (04) : 1135 - 1177
  • [9] Existence of completely elliptic periodic orbits of symmetric and convex Hamiltonians
    Arnaud, MC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11): : 1035 - 1038
  • [10] Bifurcations and control of periodic orbits in symmetric Hamiltonian systems;: An application to the Furuta pendulum
    Muñoz-Almaraz, FJ
    Freire, E
    Galán, J
    LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 75 - 80