Existence of completely elliptic periodic orbits of symmetric and convex Hamiltonians

被引:4
|
作者
Arnaud, MC [1 ]
机构
[1] Univ Paris Sud, CNRS, URA 1169, F-91405 Orsay, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 11期
关键词
D O I
10.1016/S0764-4442(99)80320-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using certain quadratic forms associated to symplectic endomorphisms which we compare with the Clarke-Ekeland dual action functional, we prove, THEOREM. - Let H be a C-2-Hamiltonian defined on R-2n, strictly convex, proper and invariant under a certain symplectic rational positive and non-degenerate rotation (this is defined in the introduction); then, every hypersurface of H contains a completely elliptic periodic orbit. This generalizes the result of G. Dell'Antonio, B. D 'Onofrio and I. Ekeland contained in [1]. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1035 / 1038
页数:4
相关论文
共 50 条
  • [1] BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS
    BERNSTEIN, D
    KATOK, A
    INVENTIONES MATHEMATICAE, 1987, 88 (02) : 225 - 241
  • [2] CONNECTING SYMMETRIC AND ASYMMETRIC FAMILIES OF PERIODIC ORBITS IN SQUARED SYMMETRIC HAMILTONIANS
    Blesa, Fernando
    Piasecki, Slawomir
    Dena, Angeles
    Barrio, Roberto
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (02):
  • [3] On the Stability of Symmetric Periodic Orbits of the Elliptic Sitnikov Problem
    Cen, Xiuli
    Cheng, Xuhua
    Huang, Zaitang
    Zhang, Meirong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (02): : 1271 - 1290
  • [4] ON THE EXISTENCE OF DOUBLY SYMMETRIC "SCHUBART-LIKE" PERIODIC ORBITS
    Martinez, Regina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (03): : 943 - 975
  • [5] On Bifurcations of Symmetric Elliptic Orbits
    Marina S. Gonchenko
    Regular and Chaotic Dynamics, 2024, 29 : 25 - 39
  • [6] On Bifurcations of Symmetric Elliptic Orbits
    Gonchenko, Marina S.
    REGULAR & CHAOTIC DYNAMICS, 2024, 29 (01): : 25 - 39
  • [7] Symmetric periodic orbits in symmetric billiards
    Ferreira, Geraldo Cesar Goncalves
    Kamphorst, Sylvie Oliffson
    Pinto-de-Carvalho, Sonia
    NONLINEARITY, 2024, 37 (01)
  • [8] On doubly symmetric periodic orbits
    Urs Frauenfelder
    Agustin Moreno
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [9] On doubly symmetric periodic orbits
    Frauenfelder, Urs
    Moreno, Agustin
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02):
  • [10] Perturbations of symmetric elliptic Hamiltonians of degree four
    Li, Chengzhi
    Mardesic, Pavao
    Roussarie, Robert
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) : 78 - 91