Implementation of Generalized Finite Element Methods for Homogenization Problems

被引:0
|
作者
A. W. Rüegg
机构
[1] Seminar for Applied Mathematics,
[2] ETH Zürich,undefined
来源
关键词
two-scale problem; generalized finite element method; homogenization; implementation;
D O I
暂无
中图分类号
学科分类号
摘要
The implementation of a generalized Finite Element Method (FEM) for problems with coefficients or geometry that oscillate locally at a small length scale ε≪1 is described. Two-scale FE-spaces are combined conformingly with standard FE. Numerical experiments show that the complexity of the algorithm is independent of the micro length scale ε.
引用
收藏
页码:671 / 681
页数:10
相关论文
共 50 条
  • [31] Generalized finite element method for vector electromagnetic problems
    Lu, Chuan
    Shanker, Balasubramaniam
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (05) : 1369 - 1381
  • [32] A Generalized Multiscale Finite Element Method for Thermoelasticity Problems
    Vasilyeva, Maria
    Stalnov, Denis
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 713 - 720
  • [33] Finite element and asymptotic homogenization methods applied to smart composite materials
    Berger, H
    Gabbert, U
    Köppe, H
    Rodriguez-Ramos, R
    Bravo-Castillero, J
    Guinovart-Diaz, R
    Otero, JA
    Maugin, GA
    [J]. COMPUTATIONAL MECHANICS, 2003, 33 (01) : 61 - 67
  • [34] Stable generalized finite element methods (SGFEM) for interfacial crack problems in bi-materials
    Li, Hong
    Cui, Cu
    Zhang, Qinghui
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 138 : 83 - 94
  • [35] Finite element methods for unilateral contact problems
    Ben Belgacem, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (09): : 811 - 816
  • [36] Finite element methods for contact problems with friction
    Wriggers, P
    [J]. TRIBOLOGY INTERNATIONAL, 1996, 29 (08) : 651 - 658
  • [37] Galerkin finite element methods for wave problems
    Sengupta, TK
    Talla, SB
    Pradhan, SC
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2005, 30 (5): : 611 - 623
  • [38] BDF Schemes in Stable Generalized Finite Element Methods for Parabolic Interface Problems with Moving Interfaces
    Zhu, Pengfei
    Zhang, Qinghui
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 124 (01): : 107 - 127
  • [39] On finite element methods for heterogeneous elliptic problems
    Loula, A. F. D.
    Correa, M. R.
    Guerreiro, J. N. C.
    Toledo, E. M.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (25-26) : 6436 - 6450
  • [40] Adaptive finite element methods for flow problems
    Becker, R
    Braack, M
    Rannacher, R
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2001, 284 : 21 - 44