Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil

被引:0
|
作者
Leroux Romain
Ludovic Chatellier
Laurent David
机构
[1] Université Paul Sabatier,Departement Fluides, Thermique, Combustion
[2] IRIT - Equipe ADRIA,undefined
[3] Institut P’,undefined
[4] CNRS-Universite de Poitiers-ENSMA,undefined
[5] UPR 3346,undefined
[6] SP2MI-Teleport 2,undefined
来源
Experiments in Fluids | 2014年 / 55卷
关键词
Kalman Filter; Proper Orthogonal Decomposition; Reconstruction Error; Projection Mode; Proper Orthogonal Decomposition Mode;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we shall investigate sequential data assimilation techniques to improve the stability of reduced-order models for fluid flows. The reduced-order model used relies on a Galerkin projection of Navier–Stokes equations on proper orthogonal decomposition (POD) basis vectors estimated from snapshots of the flow fields obtained with time-resolved particle image velocimetry (TR-PIV) measurements. The coefficients of the dynamical system are given through a least-squares regression technique applied to the experimental data and lead to a low-order model which is known to diverge, or damp, rapidly in time if left uncontrolled. In this context, a sequential data assimilation method based on a Bayesian approach is proposed. In this formalism, reduced-order models (ROMs) are modeled with discrete time from the hidden Markov processes. Given the whole trajectories of the POD temporal modes, the state of ROM coefficients initially provided by noisy PIV measurements are re-estimated from a Kalman filtering of the sequential data. Results are obtained for the flow around a NACA0012 airfoil at Reynolds numbers of 1000 and 2000 and angles of attack of 10∘,15∘,20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\circ },15^{\circ },20^{\circ }$$\end{document} and 30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30^{\circ }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Spatio-temporal description of the cavitating flow behavior around NACA 2412 hydrofoil
    Rudolf, P.
    Stefan, D.
    Sedlar, M.
    Kozak, J.
    Haban, V.
    Huzlik, R.
    9TH INTERNATIONAL SYMPOSIUM ON CAVITATION (CAV2015), 2015, 656
  • [22] Bayesian Inference of Spatio-Temporal Changes of Arctic Sea Ice
    Zhang, Bohai
    Cressie, Noel
    BAYESIAN ANALYSIS, 2020, 15 (02): : 605 - 631
  • [23] Bayesian Inference for Spatio-temporal Spike-and-Slab Priors
    Andersen, Michael Riis
    Vehtari, Aki
    Winther, Ole
    Hansen, Lars Kai
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [24] Bayesian M/EEG source reconstruction with spatio-temporal priors
    Trujillo-Barreto, Nelson J.
    Aubert-Vazquez, Eduardo
    Penny, William D.
    NEUROIMAGE, 2008, 39 (01) : 318 - 335
  • [25] Spatio-Temporal Forecasting of Global Horizontal Irradiance Using Bayesian Inference
    Sigauke, Caston
    Chandiwana, Edina
    Bere, Alphonce
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [26] Sequential Bayesian inference for spatio-temporal models of temperature and humidity data
    Lai, Yingying
    Golightly, Andrew
    Boys, Richard J.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 43
  • [27] Bayesian inference for a spatio-temporal model of road traffic collision data
    Hewett, Nicola
    Golightly, Andrew
    Fawcett, Lee
    Thorpe, Neil
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 80
  • [28] Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
    Hashemi, Ali
    Gao, Yijing
    Cai, Chang
    Ghosh, Sanjay
    Mueller, Klaus-Robert
    Nagarajan, Srikantan S.
    Haufe, Stefan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil
    N. A. Buchmann
    C. Atkinson
    J. Soria
    Experiments in Fluids, 2013, 54
  • [30] Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil
    Buchmann, N. A.
    Atkinson, C.
    Soria, J.
    EXPERIMENTS IN FLUIDS, 2013, 54 (03)