Mathematical modelling of pattern formation in activator–inhibitor reaction–diffusion systems with anomalous diffusion

被引:0
|
作者
B. Datsko
M. Kutniv
A. Włoch
机构
[1] Rzeszow University of Technoogy,
[2] Institute for Applied Problems of Mechanics and Mathematics,undefined
来源
关键词
Mathematical modeling; Autocatalytic chemical reaction; Self-organization phenomena; Anomalous diffusion; Reaction–diffusion systems; 35K61; 35B36; 35R11; 70K50;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-wave solutions in nonlinear time-fractional reaction–diffusion systems are investigated. It is shown that stability of steady-state solutions and their subsequent evolution are mainly determined by the eigenvalue spectrum of a linearized system and level of anomalous diffusion (orders of fractional derivatives). The results of linear stability analysis are confirmed by computer simulations. To illustrate the influence of anomalous diffusion on stability properties and possible dynamics in fractional reaction–diffusion systems, we generalized two classical activator–inhibitor nonlinear models: FitzHugh–Nagumo and Brusselator. Based on them a common picture of typical nonlinear solutions in nonlinear incommensurate time-fractional activator–inhibitor systems is presented.
引用
收藏
页码:612 / 631
页数:19
相关论文
共 50 条
  • [21] Relaxation Behavior and Pattern Formation in Reaction-Diffusion Systems
    Hanusse, P.
    Perez-Munuzuri, V.
    Gomez-Gesteira, M.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 1994, 415 (05):
  • [22] Effect of parametric modulation on pattern formation in reaction diffusion systems
    A. Bhattacharyay
    J.K. Bhattacharjee
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 8 : 137 - 141
  • [23] Effect of parametric modulation on pattern formation in reaction diffusion systems
    Bhattacharyay, A
    Bhattacharjee, JK
    EUROPEAN PHYSICAL JOURNAL B, 1999, 8 (01): : 137 - 141
  • [25] Pattern formation in reaction-diffusion systems on evolving surfaces
    Kim, Hyundong
    Yun, Ana
    Yoon, Sungha
    Lee, Chaeyoung
    Park, Jintae
    Kim, Junseok
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (09) : 2019 - 2028
  • [26] Front propagation in reaction-diffusion systems with anomalous diffusion
    D. del-Castillo-Negrete
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 87 - 105
  • [27] PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS
    Gonzalez, Libardo A.
    Vanegas, Juan C.
    Garzon, Diego A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 145 - 161
  • [28] Pattern formation in reaction diffusion systems: A moving boundary model
    Varghese, G
    George, J
    SELF FORMATION THEORY AND APPLICATIONS, 2004, 97-98 : 125 - 131
  • [29] Mathematical modeling of complex spatio-temporal dynamics in autocatalytic reaction-diffusion systems with anomalous diffusion
    Datsko, Bohdan
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (03)
  • [30] Pattern formation for a reaction diffusion system with constant and cross diffusion
    Sepúlveda, Mauricio (mauricio@ing-mat.udec.cl), 1600, Springer Verlag (103):