Mathematical modelling of pattern formation in activator–inhibitor reaction–diffusion systems with anomalous diffusion

被引:0
|
作者
B. Datsko
M. Kutniv
A. Włoch
机构
[1] Rzeszow University of Technoogy,
[2] Institute for Applied Problems of Mechanics and Mathematics,undefined
来源
关键词
Mathematical modeling; Autocatalytic chemical reaction; Self-organization phenomena; Anomalous diffusion; Reaction–diffusion systems; 35K61; 35B36; 35R11; 70K50;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-wave solutions in nonlinear time-fractional reaction–diffusion systems are investigated. It is shown that stability of steady-state solutions and their subsequent evolution are mainly determined by the eigenvalue spectrum of a linearized system and level of anomalous diffusion (orders of fractional derivatives). The results of linear stability analysis are confirmed by computer simulations. To illustrate the influence of anomalous diffusion on stability properties and possible dynamics in fractional reaction–diffusion systems, we generalized two classical activator–inhibitor nonlinear models: FitzHugh–Nagumo and Brusselator. Based on them a common picture of typical nonlinear solutions in nonlinear incommensurate time-fractional activator–inhibitor systems is presented.
引用
收藏
页码:612 / 631
页数:19
相关论文
共 50 条
  • [1] Mathematical modelling of pattern formation in activator-inhibitor reaction-diffusion systems with anomalous diffusion
    Datsko, B.
    Kutniv, M.
    Wloch, A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (03) : 612 - 631
  • [2] A multiple scale pattern formation cascade in reaction-diffusion systems of activator-inhibitor type
    Henry, Marie
    Hilhorst, Danielle
    Muratov, Cyrill B.
    INTERFACES AND FREE BOUNDARIES, 2018, 20 (02) : 297 - 336
  • [3] Rethinking pattern formation in reaction–diffusion systems
    J. Halatek
    E. Frey
    Nature Physics, 2018, 14 : 507 - 514
  • [4] Cross-diffusion and pattern formation in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (06) : 897 - 912
  • [5] PATTERN FORMATION IN CHEMOTAXIC REACTION-DIFFUSION SYSTEMS
    Shoji, Hiroto
    Saitoh, Keitaro
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (03)
  • [6] Fronts and pattern formation in reaction-diffusion systems
    Droz, M
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 211 - 220
  • [7] Pattern formation in reaction diffusion systems: a Galerkin model
    A. Bhattacharyay
    J.K. Bhattacharjee
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 21 : 561 - 566
  • [8] Pattern formation in reaction diffusion systems: a Galerkin model
    Bhattacharyay, A
    Bhattacharjee, JK
    EUROPEAN PHYSICAL JOURNAL B, 2001, 21 (04): : 561 - 566
  • [9] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6): : 673 - 681
  • [10] Rethinking pattern formation in reaction-diffusion systems
    Halatek, J.
    Frey, E.
    NATURE PHYSICS, 2018, 14 (05) : 507 - +