Remarks on infinite dimensional duality

被引:0
|
作者
A. Maugeri
F. Raciti
机构
[1] Università di Catania,Dipartimento di Matematica e Informatica
来源
关键词
Strong duality; Quasi-relative interior; Tangent cone; Normal cone;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improvement of a recent duality theorem and a new result which stresses the fact that the strong duality, without assumptions on the interior of the ordering cone, is related to the normal cone.
引用
收藏
页码:581 / 588
页数:7
相关论文
共 50 条
  • [31] Remarks on the Existence and Uniqueness of Solutions to the Infinite Dimensional Sylvester Equations
    Emirsajlow, Zbigniew
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 176 - +
  • [32] Some remarks on linear filtering theory for infinite dimensional systems
    Bensoussan, A
    DIRECTIONS IN MATHEMATICAL SYSTEMS THEORY AND OPTIMIZATION, 2003, 286 : 27 - 39
  • [33] REMARKS ON CLASSIFICATION PROBLEM FOR INFINITE-DIMENSIONAL HILBERT LATTICES
    MORASH, RP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 43 (01) : 42 - 46
  • [34] A new geometric condition for Fenchel's duality in infinite dimensional spaces
    Burachik, RS
    Jeyakumar, V
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 229 - 233
  • [35] Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy
    Laura Scrimali
    Journal of Optimization Theory and Applications, 2012, 154 : 258 - 277
  • [36] Eisenstein series for infinite-dimensional U-duality groups
    Philipp Fleig
    Axel Kleinschmidt
    Journal of High Energy Physics, 2012
  • [37] General infinite dimensional duality and applications to evolutionary network equilibrium problems
    Daniele, Patrizia
    Giuffre, Sofia
    OPTIMIZATION LETTERS, 2007, 1 (03) : 227 - 243
  • [38] New results on infinite dimensional duality in elastic-plastic torsion
    Giuffre, Sofia
    Maugeri, Antonino
    FILOMAT, 2012, 26 (05) : 1029 - 1036
  • [39] Eisenstein series for infinite-dimensional U-duality groups
    Fleig, Philipp
    Kleinschmidt, Axel
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [40] Infinite-Dimensional Schur–Weyl Duality and the Coxeter–Laplace Operator
    N. V. Tsilevich
    A. M. Vershik
    Communications in Mathematical Physics, 2014, 327 : 873 - 885